GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The importance of temperature in regulating physiological processes is without question; however, the interpretation of the relationship between temperature and ecological data is much more complicated. Consequently, it is difficult to decide how the nature of the temperature response terms should be included in models used to predict responses of microbial processes to increasing regional temperature. This analysis compiles several years of data from a research programme conducted in Chesapeake Bay, in an effort to examine how individual microbial processes − as well as the balance between autotrophy and heterotrophy − have responded to temperature, and to predict changes in microbial trophic state based on realistic increases in global temperature. The upper boundary on all of the pelagic microbial rate processes that were measured could be described remarkably well as a linear function of temperature, although there was substantial scatter in the data. Pelagic microbial rate processes (e.g. phytoplankton production, respiration, bacterial productivity) showed a remarkably constrained range of Q10 values from 1.7 to 3.4. The one notable exception to this was nitrogen uptake in the North and Mid Bay, which exhibited Q10 values 〈 1.0. Proxies for phytoplankton biomass (e.g. chlorophyll) were largely independent of temperature while bacterial abundance was significantly related to temperature and was found to have a Q10 of 1.88.    Using these individual temperature responses, the balance of autotrophy and heterotrophy was assessed by calculating the community photosynthesis to respiration (P:R), NH4+ uptake to regeneration (U:R) and phytoplankton to bacterial productivity (PP:BP) ratios for current conditions (all ratios) and for a 2 and 5 °C temperature increase (NH4+ U:R excluded). The NH4+ U:R ratio stayed remarkable constant at ∼1 over the entire temperature range supporting the importance of regenerative processes to nitrogen availability even during periods of heavy allochthonous inputs. These elevated temperature calculations for P:R and PP:BP suggest that the magnitude of autotrophic production during the spring bloom may decrease with increased regional temperature and, as a consequence, the Chesapeake Bay might become net heterotrophic on an annual timescale. These calculations should be considered with caution, but nonetheless demonstrate that the impact of increasing temperature on the balance of autotrophic and heterotrophic processes needs to be researched further.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 363 (1997), S. 1-12 
    ISSN: 1573-5117
    Keywords: top-down control ; bottom-upcontrol ; NH4 +regeneration ; nutrientlimitation ; trophodynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Although our understanding of the complexity of theplankton and microbial food webs has increasedsubstantially over the past decade or two, there hasbeen little appreciation to date of the interactionsbetween top-down (grazing) control and bottom-up(nutrient supply) control on the structure andnutrient cycling processes within these webs. Thequality of nutrient supply, both in terms of therelative proportion of inorganic: organic nitrogen,as well as the relative proportion of inorganicnitrogen substrates has a direct impact on rates ofnitrogen uptake, and ultimately on the relativecomposition of phytoplankton and bacteria. At thesame time, grazing by microzooplankton andmacrozooplankton also influences both thecomposition of the food web and the rate of supplyof nitrogen. The impact of macrozooplankton onrates of nitrogen cycling in a microbial communityis complex: macrozooplankton release NH4 +,urea, and amino acids by direct excretion and by’sloppy feeding‘, but they also control both therates of nitrogen regeneration and uptake within thecommunity by grazing the microzooplankton, theprimary regenerators of NH4 +, and thephytoplankton, the primary consumers of nitrogen. Thus, grazing and nitrogen recycling are intricatelyconnected: the presence of large zoooplanktonsimultaneously provides top-down control of biomassand bottom-up nutrient supply. These relationshipsvary depending on the scale of interest, and haveimportant consequences for how we measure and modeltotal nitrogen cycling in a natural food web.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: Arranging organisms into functional groups aids ecological research by grouping organisms (irrespective of phylogenetic origin) that interact with environmental factors in similar ways. Planktonic protists traditionally have been split between photoautotrophic “phytoplankton” and phagotrophic “microzoo-plankton”. However, there is a growing recognition of the importance of mixotrophy in euphotic aquatic systems, where many protists often combine photoautotrophic and phagotrophic modes of nutrition. Such organisms do not align with the traditional dichotomy of phytoplankton and microzooplankton. To reflect this understanding,we propose a new functional grouping of planktonic protists in an eco- physiological context: (i) phagoheterotrophs lacking phototrophic capacity, (ii) photoautotrophs lacking phagotrophic capacity,(iii) constitutive mixotrophs (CMs) as phagotrophs with an inherent capacity for phototrophy, and (iv) non-constitutive mixotrophs (NCMs) that acquire their phototrophic capacity by ingesting specific (SNCM) or general non-specific (GNCM) prey. For the first time, we incorporate these functional groups within a foodweb structure and show, using model outputs, that there is scope for significant changes in trophic dynamics depending on the protist functional type description. Accord- ingly, to better reflect the role of mixotrophy, we recommend that as important tools for explanatory and predictive research, aquatic food-web and biogeochemical models need to redefine the protist groups within their frameworks.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2005. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 18, 2 (2005): 136-147.
    Description: Marine and fresh waters team with life, much of it microscopic, and most of it harmless; in fact, it is this microscopic life on which all aquatic life ultimately depends for food. Microscopic algae also play an important role in regulating atmospheric CO2 by sequestering it during production and transporting it to deeper waters. Yet some of the microscopic “algae” cause problems when they accumulate in sufficient numbers, due either to their production of endogenous toxins, or to their sheer biomass or even their physical shape. These are known as the harmful algae, or, when in sufficient numbers, harmful algal blooms (HABs). These blooms were formerly called “red tides” because many were composed of dinoflagellates containing red pigments that in high densities colored the water red, but blooms may also be green, yellow, or brown, depending on the type of algae present and their pigmentation. As with all blooms, their proliferation results from a combination of physical, chemical, and biological mechanisms and their interactions with other components of the food web that are for the most part poorly understood. Most HABs are dinoflagellates or cyanobacteria, but other classes of algae, including diatoms, have members that may form HABs under some conditions. As stated by J. Ryther and co-workers many years ago, “...there is no necessity to postulate obscure factors which would account for a prodigious growth of dinoflagellates to explain red water. It is necessary only to have conditions favoring the growth and dominance of a moderately large population of a given species, and the proper hydrographic and meteorological conditions to permit the accumulation of organisms at the surface and to effect their future concentrations in localized areas” (Ryther, 1955).
    Description: Funding for these activities has been provided by NSF, NOAA, and the European Commission DG Research-Environment Directorate. GEOHAB is an initiative of SCOR (Scientific Committee on Oceanic Research) and IOC (Intergovernmental Oceanographic Commission of UNESCO). P. Glibert and D. Anderson were funded by the National Oceanic and Atmospheric Administration (NOAA), ECOHAB, MERHAB and NSF.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Harmful Algae 8 (2008): 39-53, doi:10.1016/j.hal.2008.08.017.
    Description: Coastal waters of the United States (U.S.) are subject to many of the major harmful algal bloom (HAB) poisoning syndromes and impacts. These include paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), ciguatera fish poisoning (CFP) and various other HAB phenomena such as fish kills, loss of submerged vegetation, shellfish mortalities, and widespread marine mammal mortalities. Here, the occurrences of selected HABs in a selected set of regions are described in terms of their relationship to eutrophication, illustrating a range of responses. Evidence suggestive of changes in the frequency, extent or magnitude of HABs in these areas is explored in the context of the nutrient sources underlying those blooms, both natural and anthropogenic. In some regions of the U.S., the linkages between HABs and eutrophication are clear and well documented, whereas in others, information is limited, thereby highlighting important areas for further research.
    Description: Support was provided through the Woods Hole Center for Oceans and Human Health (to DMA), National Science Foundation (NSF) grants OCE-9808173 and OCE-0430724 (to DMA), OCE-0234587 (to WPC), OCE04-32479 (to MLP), OCE-0138544 (to RMK), OCE-9981617 (to PMG); National Institute of Environmental Health Sciences (NIEHS) grants P50ES012742-01 (to DMA) and P50ES012740 (to MLP); NOAA Grants NA96OP0099 (to DMA), NA16OP1450 (to VLT), NA96P00084 (to GAV and CAH), NA160C2936 and NA108H-C (to RMK), NA860P0493 and NA04NOS4780241 (to PMG), NA04NOS4780239-02 (to RMK), NA06NOS4780245 (to DWT). Support was also provided from the West Coast Center for Oceans and Human Health (to VLT and WPC), USEPA Grant CR826792-01-0 (to GAV and CAH), and the State of Florida Grant S7701617826 (to GAV and CAH).
    Keywords: Harmful algal blooms ; HABs ; Red tides ; Eutrophication ; Nutrients ; Nitrogen ; Phosphorus
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2010. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 23, no. 3 (2010): 126-139, doi: 10.5670/oceanog.2010.28
    Description: Through its promotion of coordinated international research programs, the Intergovernmental Oceanographic Commission (IOC) has facilitated major progress on some of the most challenging problems in oceanography. Issues of global significance—such as general ocean circulation, the carbon cycle, the structure and dynamics of ecosystems, and harmful algal blooms—are so large in scope that they require international collaboration to be addressed systematically. International collaborations are even more important when these issues are affected by anthropogenic processes— such as climate change, CO2 enhancement, ocean acidification, pollution, and eutrophication—whose impacts may differ greatly throughout the global ocean. These problems require an entire portfolio of research activities, including global surveys, regional process studies, time-series observations, laboratorybased investigations, and satellite remote sensing. Synthesis of this vast array of results presents its own set of challenges (Hofmann et al., 2010), and models offer an explicit framework for integration of the knowledge gained as well as detailed investigation of the underlying dynamics. Models help us to understand what happened in the past, and to make predictions of future changes—both of which support the development of sound policy and decision making. We review examples of how models have been used for this suite of purposes, focusing on areas where IOC played a key role in organizing and coordinating the research activities.
    Description: Support from the National Science Foundation, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, and National Institute of Environmental Health Sciences. DS acknowledges CLISAP (Integrated Climate System Analysis and Prediction) at the KlimaCampus of the University of Hamburg. PG acknowledges SCOR/ LOICZ Working Group 132.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecological Applications 17 (2007): S3–S16, doi:10.1890/05-0800.1.
    Description: The Barnegat Bay-Little Egg Harbor Estuary is classified here as a highly eutrophic estuary based on application of NOAA’s National Estuarine Eutrophication Assessment model. Because it is shallow, poorly flushed, and bordered by highly developed watershed areas, the estuary is particularly susceptible to the effects of nutrient loading. Most of this load (~50%) is from surface water inflow, but substantial fractions also originate from atmospheric deposition (~39%), and direct groundwater discharges (~11%). No point source inputs of nutrients exist in the Barnegat Bay watershed. Since 1980, all treated wastewater from the Ocean County Utilities Authority's regional wastewater treatment system has been discharged 1.6 km offshore in the Atlantic Ocean. Eutrophy causes problems in this system, including excessive micro- and macroalgal growth, harmful algal blooms (HABs), altered benthic invertebrate communities, impacted harvestable fisheries, and loss of essential habitat (i.e., seagrass and shellfish beds). Similar problems are evident in other shallow lagoonal estuaries of the Mid-Atlantic and South Atlantic regions. To effectively address nutrient enrichment problems in the Barnegat Bay-Little Egg Harbor Estuary, it is important to determine the nutrient loading levels that produce observable impacts in the system. It is also vital to continually monitor and assess priority indicators of water quality change and estuarine health. In addition, the application of a new generation of innovative models using web-based tools (e.g., NLOAD) will enable researchers and decision-makers to more successfully manage nutrient loads from the watershed. Finally, the implementation of stormwater retrofit projects should have beneficial effects on the system.
    Description: Financial support of the Barnegat Bay National Estuary Program and Jacques Cousteau National Estuarine Research Reserve is gratefully acknowledged.
    Keywords: Barnegat Bay-Little Egg Harbor Estuary ; Nutrient loading ; Eutrophication ; Indicators ; Assessment ; Remediation
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Marine Pollution Bulletin 56 (2008): 1049-1056, doi:10.1016/j.marpolbul.2008.03.010.
    Description: The proposed plan for enrichment of the Sulu Sea, Philippines, a region of rich marine biodiversity, with thousands of tonnes of urea in order to stimulate algal blooms and sequester carbon is flawed for multiple reasons. Urea is preferentially used as a nitrogen source by some cyanobacteria and dinoflagellates, many of which are neutrally or positively buoyant. Biological pumps to the deep sea are classically leaky, and the inefficient burial of new biomass makes the estimation of a net loss of carbon from the atmosphere questionable at best. The potential for growth of toxic dinoflagellates is also high, as many grow well on urea and some even increase their toxicity when grown on urea. Many toxic dinoflagellates form cysts which can settle to the sediment and germinate in subsequent years, forming new blooms even without further fertilization. If large-scale blooms do occur, it is likely that they will contribute to hypoxia in the bottom waters upon decomposition. Lastly, urea production requires fossil fuel usage, further limiting the potential for net carbon sequestration. The environmental and economic impacts are potentially great and need to be rigorously assessed.
    Description: This paper was developed under the Global Ecology and Oceanography of Harmful Algal Blooms (GEOHAB) core research project on HABs and Eutrophication and the GEOHAB regional focus on HABs in Asia. GEOHAB is supported by the International Oceanographic Commission (IOC) of UNESCO and by the Scientific Committee on Oceanic Research (SCOR), which are, in turn, supported by multiple agencies, including NSF and NOAA of the USA.
    Keywords: Urea dumping ; Ocean fertilization ; Carbon credits ; Sulu Sea ; Carbon sequestration ; Harmful algae ; Toxic dinoflagellates ; Cyanobacteria ; Hypoxia
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Protist 167 (2016): 106–120, doi:10.1016/j.protis.2016.01.003.
    Description: Arranging organisms into functional groups aids ecological research by grouping organisms (irrespective of phylogenetic origin) that interact with environmental factors in similar ways. Planktonic protists traditionally have been split between photoautotrophic “phytoplankton” and phagotrophic “microzooplankton”. However, there is a growing recognition of the importance of mixotrophy in euphotic aquatic systems, where many protists often combine photoautotrophic and phagotrophic modes of nutrition. Such organisms do not align with the traditional dichotomy of phytoplankton and microzooplankton. To reflect this understanding, we propose a new functional grouping of planktonic protists in an eco-physiological context: (i) phagoheterotrophs lacking phototrophic capacity, (ii) photoautotrophs lacking phagotrophic capacity, (iii) constitutive mixotrophs (CMs) as phagotrophs with an inherent capacity for phototrophy, and (iv) non-constitutive mixotrophs (NCMs) that acquire their phototrophic capacity by ingesting specific (SNCM) or general non-specific (GNCM) prey. For the first time, we incorporate these functional groups within a foodweb structure and show, using model outputs, that there is scope for significant changes in trophic dynamics depending on the protist functional type description. Accordingly, to better reflect the role of mixotrophy, we recommend that as important tools for explanatory and predictive research, aquatic food-web and biogeochemical models need to redefine the protist groups within their frameworks.
    Description: This work was funded by grants to KJF and AM from the Leverhulme Trust (International Network Grant F00391 V) and NERC (UK) through its iMARNET programme NE/K001345/1.
    Keywords: Plankton functional types (PFTs) ; Phagotroph ; Phototroph ; Mixotroph ; Phytoplankton ; Microzooplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...