GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The importance of temperature in regulating physiological processes is without question; however, the interpretation of the relationship between temperature and ecological data is much more complicated. Consequently, it is difficult to decide how the nature of the temperature response terms should be included in models used to predict responses of microbial processes to increasing regional temperature. This analysis compiles several years of data from a research programme conducted in Chesapeake Bay, in an effort to examine how individual microbial processes − as well as the balance between autotrophy and heterotrophy − have responded to temperature, and to predict changes in microbial trophic state based on realistic increases in global temperature. The upper boundary on all of the pelagic microbial rate processes that were measured could be described remarkably well as a linear function of temperature, although there was substantial scatter in the data. Pelagic microbial rate processes (e.g. phytoplankton production, respiration, bacterial productivity) showed a remarkably constrained range of Q10 values from 1.7 to 3.4. The one notable exception to this was nitrogen uptake in the North and Mid Bay, which exhibited Q10 values 〈 1.0. Proxies for phytoplankton biomass (e.g. chlorophyll) were largely independent of temperature while bacterial abundance was significantly related to temperature and was found to have a Q10 of 1.88.    Using these individual temperature responses, the balance of autotrophy and heterotrophy was assessed by calculating the community photosynthesis to respiration (P:R), NH4+ uptake to regeneration (U:R) and phytoplankton to bacterial productivity (PP:BP) ratios for current conditions (all ratios) and for a 2 and 5 °C temperature increase (NH4+ U:R excluded). The NH4+ U:R ratio stayed remarkable constant at ∼1 over the entire temperature range supporting the importance of regenerative processes to nitrogen availability even during periods of heavy allochthonous inputs. These elevated temperature calculations for P:R and PP:BP suggest that the magnitude of autotrophic production during the spring bloom may decrease with increased regional temperature and, as a consequence, the Chesapeake Bay might become net heterotrophic on an annual timescale. These calculations should be considered with caution, but nonetheless demonstrate that the impact of increasing temperature on the balance of autotrophic and heterotrophic processes needs to be researched further.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1335
    Keywords: Key words Brain tumor ; Glioma ; Preclinical evaluation ; Human tumor xenograft ; Ellipticinium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Some ellipticine derivative salts, including 9-chloro-2-methylellipticinium (CME), have been found to have a marked selectivity against all eight brain tumor cell lines of the U.S. National Cancer Institute's disease-oriented in vitro screen. We initiated in vivo antitumor studies to explore the feasibility for further development of this class of compounds. We found that CME was extremely toxic to nude mice when given i.p. at a dose of 25 mg/kg for 3 consecutive days. Animals treated by this route experienced an increase in hepatic transaminases and histopathological changes in the liver, compatible with mitochondrial damage. In contrast, when the portal circulation was bypassed and the same dose of CME was given i.v., animals tolerated daily bolus injections for 5 consecutive days. This 5-day i.v. bolus schedule had consistent antitumor activity, with 28.1% growth delay on s.c. implanted human U251 gliomas. When the potentially high peaks of CME in the portal circulation were avoided by using a 3-day continuous infusion with osmotic minipumps implanted i.p. to release 3.4 mg kg−1 h−1 or 6.6 mg kg−1 h−1 CME, there were only modest increases in liver enzymes and leukopenia, but no meaningful antitumor activity was observed. In contrast, continuous infusion in the s.c. space was well tolerated and was accompanied by a demonstrable growth delay in s.c. U251 human gliomas of 37.8%. When CME was used in conjunction with carmustine, etoposide or cisplatin, no synergistic activities were observed, but additive effects were demonstrated. Our pharmacokinetic and disposition studies with CME argue against the notion that large and invasive tumors in the brain lack blood-brain barrier features. When CME was used in animals bearing orthotopically implanted U251 gliomas in the brain of nude mice, the survival of the treated animals was not better than vehicle controls, and the addition of CME to carmustine therapy did not improve the survival of those animals treated with carmustine alone. We conclude that, in spite of its marked cytotoxicity in vitro on a variety of human brain tumor cell lines, including U251 glioma cells, CME has a modest antitumor effect on extracranially implanted U251 glioma tumors, and no beneficial effect in animals bearing the same U251 tumor in the brain, owing to a poor penetration into the brain parenchyma.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...