GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Radiocarbon  (4)
Document type
Keywords
Years
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 45 (2018): 8425-8434, doi:10.1029/2018GL078904.
    Description: Compound‐specific radiocarbon analysis was performed on different grain‐size fractions of surficial sediments to examine and compare lateral transport times (LTTs) of organic carbon. 14C aging of long‐chain leaf wax fatty acids along two dispersal pathways of fluvially derived material on adjacent continental margins implies LTTs over distances of ~30 to 500 km that range from hundreds to thousands of years. The magnitude of aging differs among grain size fractions. Our finding suggests that LTTs vary both temporally and spatially as a function of the specific properties of different continental shelf settings. Observations suggest that 14C aging is widespread during lateral transport over continental shelves, with hydrodynamic particle sorting inducing age variations among organic components residing in different grain sizes. Consideration of these phenomena is of importance for understanding carbon cycle processes and interpretation on sedimentary records on continental margins.
    Description: National Natural Science Foundation of China Grant Numbers: 41520104009, 41521064; MOE; JSPS Grant Numbers: A‐1003, 2‐1304, B‐0904, B‐0903, 22310014, 23651021, 25550020; NIES; SNSF Grant Number: 200021_140850
    Keywords: Radiocarbon ; Lateral particle transport time ; Organic carbon aging ; Continental shelf sediments ; Grain size fractions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 120 (2015): 2784–2799, doi:10.1002/2014JC010643.
    Description: To better understand the current carbon cycle and potentially detect its change in the rapidly changing Arctic Ocean, we examined sinking particles collected quasi-continuously over a period of 7 years (2004–2011) by bottom-tethered sediment trap moorings in the central Canada Basin. Total mass flux was very low (〈100 mg m−2 d−1) at all sites and was temporally decoupled from the cycle of primary production in surface waters. Extremely low radiocarbon contents of particulate organic carbon and high aluminum contents in sinking particles reveal high contributions of resuspended sediment to total sinking particle flux in the deep Canada Basin. Station A (75°N, 150°W) in the southwest quadrant of the Canada Basin is most strongly influenced while Station C (77°N, 140°W) in the northeast quadrant is least influenced by lateral particle supply based on radiocarbon content and Al concentration. The results at Station A, where three sediment traps were deployed at different depths, imply that the most likely mode of lateral particle transport was as thick clouds of enhanced particle concentration extending well above the seafloor. At present, only 1%–2% of the low levels of new production in Canada Basin surface waters reaches the interior basin. Lateral POC supply therefore appears to be the major source of organic matter to the interior basin. However, ongoing changes to surface ocean boundary conditions may influence both lateral and vertical supply of particulate material to the deep Canada Basin.
    Description: This research was funded by the NSF Division of Polar Programs (ARC-0909377), the Ocean and Climate Change Institute of Woods Hole Oceanographic Institution, and ETH Zürich. J.H. and M.K. were partly supported by the National Research Foundation of Korea grant funded by the Korean Government (2011–0013629).
    Keywords: Canada Basin ; Particulate organic carbon ; Lateral supply ; Radiocarbon ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/vnd.ms-excel
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2019. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 124(8), (2019): 2582-2594, doi: 10.1029/2019JG005107.
    Description: To assess the influences of carbon sources and transport processes on the 14C age of organic matter (OM) in continental margin sediments, we examined a suite of samples collected along a river‐shelf‐deep ocean transect in the East China Sea (ECS). Ramped pyrolysis‐oxidiation was conducted on suspended particulate matter in the Yangtze River and on surface sediments from the ECS shelf and northern Okinawa Trough. 14C ages were determined on OM decomposition products within different temperature windows. These measurements suggest that extensive amounts of pre‐old (i.e., millennial age) organic carbon (OC) are subject to degradation within and beyond the Yangtze River Delta, and this process is accompanied by an exchange of terrestrial and marine OM. These results, combined with fatty acid concentration data, suggest that both the nature and extent of OM preservation/degradation as well as the modes of transport influence the 14C ages of sedimentary OM. Additionally, we find that the age of (thermally) refractory OC increases during across‐shelf transport and that the age offset between the lowest and highest temperature OC decomposition fractions also increases along the shelf‐to‐trough transect. Amplified interfraction spread or 14C heterogeneity is the greatest in the Okinawa Trough. Aged sedimentary OM across the transect may be a consequence of several reasons including fossil OC input, selective degradation of younger OC, hydrodynamic sorting processes, and aging during lateral transport. Consequently, each of them should be considered in assessing the 14C results of sedimentary OM and its implications for the carbon cycle and interpretation of sedimentary records.
    Description: This study was supported by Doc. Mobility Fellowship (P1EZP2_159064; R. B.) from the Swiss National Science Foundation (SNSF). This study was also supported by SNF “CAPS‐LOCK” project 200021_140850 (T. I. E.), by the National Natural Science Foundation of China (NSFC; grants 41520104009 and 41630966, M. Z.), and by the “111” project (B13030). We are grateful for support of the NOSAMS staff in the execution of this project. We also appreciate the assistance from Yushuang Zhang (Ocean University of China) at NOSAMS and members of the Laboratory for Ion Beam Physics at ETH Zurich for AMS measurements. We acknowledge Lei Xing, Haidong Zhang, Guodong Song, Meng Yu, Yonghao Jia, and Shanshan Duan (Ocean University of China) for sampling assistance on the cruises. Assistance at sea by the crews of R/V Dongfanghong II and R/V Hakuhu Maru is also acknowledged. Readers can access or find the data from figures and tables in the supporting information.
    Keywords: Radiocarbon ; Carbon cycle ; Sediments ; Organic carbon ; Hydrodynamic processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Eglinton, T. I., Galy, V. V., Hemingway, J. D., Feng, X., Bao, H., Blattmann, T. M., Dickens, A. F., Gies, H., Giosan, L., Haghipour, N., Hou, P., Lupker, M., McIntyre, C. P., Montluçon, D. B., Peucker-Ehrenbrink, B., Ponton, C., Schefuß, E., Schwab, M. S., Voss, B. M., Wacker, L., Wu, Y., & Zhao, M. Climate control on terrestrial biospheric carbon turnover. Proceedings of the National Academy of Sciences of the United States of America, 118(8), (2021): e2011585118, htps://doi.org/ 10.1073/pnas.2011585118.
    Description: Terrestrial vegetation and soils hold three times more carbon than the atmosphere. Much debate concerns how anthropogenic activity will perturb these surface reservoirs, potentially exacerbating ongoing changes to the climate system. Uncertainties specifically persist in extrapolating point-source observations to ecosystem-scale budgets and fluxes, which require consideration of vertical and lateral processes on multiple temporal and spatial scales. To explore controls on organic carbon (OC) turnover at the river basin scale, we present radiocarbon (14C) ages on two groups of molecular tracers of plant-derived carbon—leaf-wax lipids and lignin phenols—from a globally distributed suite of rivers. We find significant negative relationships between the 14C age of these biomarkers and mean annual temperature and precipitation. Moreover, riverine biospheric-carbon ages scale proportionally with basin-wide soil carbon turnover times and soil 14C ages, implicating OC cycling within soils as a primary control on exported biomarker ages and revealing a broad distribution of soil OC reactivities. The ubiquitous occurrence of a long-lived soil OC pool suggests soil OC is globally vulnerable to perturbations by future temperature and precipitation increase. Scaling of riverine biospheric-carbon ages with soil OC turnover shows the former can constrain the sensitivity of carbon dynamics to environmental controls on broad spatial scales. Extracting this information from fluvially dominated sedimentary sequences may inform past variations in soil OC turnover in response to anthropogenic and/or climate perturbations. In turn, monitoring riverine OC composition may help detect future climate-change–induced perturbations of soil OC turnover and stocks.
    Description: This work was supported by grants from the US NSF (OCE-0928582 to T.I.E. and V.V.G.; OCE-0851015 to B.P.-E., T.I.E., and V.V.G.; and EAR-1226818 to B.P.-E.), Swiss National Science Foundation (200021_140850, 200020_163162, and 200020_184865 to T.I.E.), and National Natural Science Foundation of China (41520104009 to M.Z.).
    Keywords: Radiocarbon ; Plant biomarkers ; Carbon turnover times ; Fluvial carbon ; Carbon cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...