GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • American Geophysical Union  (1)
  • Elsevier  (1)
  • Springer Nature  (1)
Publikationsart
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2022-01-31
    Beschreibung: Highlights • Major eruption of Ilopango volcano, El Salvador occurred in the first half of the 6th century. • Ilopango eruption is consistent with ‘mystery’ eruption of 540 CE that caused global cooling. • Magnitude 7 event ranks as one of the 10 largest on Earth in past 7000 years. • Impacts on the Maya of Central America were severe, including estimated 100,000 + fatalities. Abstract Ilopango volcano (El Salvador) erupted violently during the Maya Classic Period (250–900 CE) in a densely-populated and intensively-cultivated region of the southern Maya realm, causing regional abandonment of an area covering more than 20,000 km2. However, neither the regional nor global impacts of the Tierra Blanca Joven (TBJ) eruption in Mesoamerica have been well appraised due to limitations in available volcanological, chronological, and archaeological observations. Here we present new evidence of the age, magnitude and sulfur release of the TBJ eruption, establishing it as one of the two hitherto unidentified volcanic triggers of a period of stratospheric aerosol loading that profoundly impacted Northern Hemisphere climate and society between circa 536 and 550 CE. Our chronology is derived from 100 new radiocarbon measurements performed on three subfossil tree trunks enveloped in proximal TBJ pyroclastic deposits. We also reassess the eruption magnitude using terrestrial (El Salvador, Guatemala, Honduras) and near-shore marine TBJ tephra deposit thickness measurements. Together, our new constraints on the age, eruption size (43.6 km3 Dense Rock Equivalent of magma, magnitude = 7.0) and sulfur yield (∼9–90 Tg), along with Ilopango's latitude (13.7° N), squarely frame the TBJ as the major climate-forcing eruption of 539 or 540 CE identified in bipolar ice cores and sourced to the tropics. In addition to deepening appreciation of the TBJ eruption's impacts in Mesoamerica, linking it to the major Northern Hemisphere climatic downturn of the mid-6th century CE offers another piece in the puzzle of understanding Eurasian history of the period.
    Materialart: Article , PeerReviewed
    Format: other
    Format: text
    Format: image
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-05-26
    Beschreibung: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research-Atmospheres 125(1),(2020): e2019JD031619, doi:10.1029/2019JD031619.
    Beschreibung: High‐resolution paleoclimate records are essential for improving our understanding of internal variability and the detection and attribution of forced climate system responses. The densely populated northeastern United States is at risk from increasing temperatures, severe droughts, and extreme precipitation, but the region has limited annual and seasonal‐resolution paleoclimate records beyond the instrumental record. Chamaecyparis thyoides, L. (B.S.P.), Atlantic white cedar, a wetland conifer found within 200 km of the Atlantic coastline of the United States, is a promising tree‐ring proxy that can fill in these data gaps. Here, we develop and analyze a new network of Atlantic white cedar tree‐ring chronologies across the northeastern United States and demonstrate that site selection is important for regional paleoclimate reconstructions. Ring width variability reflects winter through summer temperatures at inland and hydrologically stable sites in the northernmost section of the species' range. Ombrotrophic sites along the coast record hydrological signals and correlate with growing season precipitation. We demonstrate skillful regional climate field reconstructions for the last several centuries and show the increased skill from incorporating our moisture sensitive sites into broad‐scale products like the North American Drought Atlas. This comprehensive understanding of the species' climate responses leads to a tree‐ring network that provides the long‐term multivariate climate context at multidecadal and centennial time scales for the large‐scale ocean‐atmospheric processes that influence the climate of the region. We use this network to examine the covariance of temperature and drought across the New England area over the past two centuries.
    Beschreibung: This research is funded by the U.S. National Science Foundation Paleo Perspectives on Climate Change program (P2C2; AGS‐1304262 and AGS‐1501856). The authors of this paper thank the many field assistants who helped develop the northeastern AWC network. We thank the 300 Committee Land Trust, Dartmouth National Resources Trust, Orleans Conservation Trust, Marine Biological Laboratory, Trustees of Reservations, National Park Service, U.S. Forest Service, The Nature Conservancy, and private land owners who allowed access to field sites.
    Beschreibung: 2020-06-13
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-04-22
    Beschreibung: Exceptional drought events, known as megadroughts, have occurred on every continent outside Antarctica over the past ~2,000 years, causing major ecological and societal disturbances. In this Review, we discuss shared causes and features of Common Era (Year 1–present) and future megadroughts. Decadal variations in sea surface temperatures are the primary driver of megadroughts, with secondary contributions from radiative forcing and land–atmosphere interactions. Anthropogenic climate change has intensified ongoing megadroughts in south-western North America and across Chile and Argentina. Future megadroughts will be substantially warmer than past events, with this warming driving projected increases in megadrought risk and severity across many regions, including western North America, Central America, Europe and the Mediterranean, extratropical South America, and Australia. However, several knowledge gaps currently undermine confidence in understanding past and future megadroughts. These gaps include a paucity of high-resolution palaeoclimate information over Africa, tropical South America and other regions; incomplete representations of internal variability and land surface processes in climate models; and the undetermined capacity of water-resource management systems to mitigate megadrought impacts. Addressing these deficiencies will be crucial for increasing confidence in projections of future megadrought risk and for resiliency planning.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...