GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Atmospheric carbon dioxide concentrations were significantly lower during glacial periods than during intervening interglacial periods, but the mechanisms responsible for this difference remain uncertain. Many recent explanations call on greater carbon storage in a poorly ventilated deep ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The Isla Vista hydrocarbon seep (34á°19' N, 119á°50' W), located offshore from Santa Barbara, differs from the deeper, well studied seeps of the Gulf of Mexico10'11 in its shallow depth (16 m) and nearshore location (0.5 km) and in the absence of vent-type fauna. The ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-01-08
    Description: Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: Highlights • Major eruption of Ilopango volcano, El Salvador occurred in the first half of the 6th century. • Ilopango eruption is consistent with ‘mystery’ eruption of 540 CE that caused global cooling. • Magnitude 7 event ranks as one of the 10 largest on Earth in past 7000 years. • Impacts on the Maya of Central America were severe, including estimated 100,000 + fatalities. Abstract Ilopango volcano (El Salvador) erupted violently during the Maya Classic Period (250–900 CE) in a densely-populated and intensively-cultivated region of the southern Maya realm, causing regional abandonment of an area covering more than 20,000 km2. However, neither the regional nor global impacts of the Tierra Blanca Joven (TBJ) eruption in Mesoamerica have been well appraised due to limitations in available volcanological, chronological, and archaeological observations. Here we present new evidence of the age, magnitude and sulfur release of the TBJ eruption, establishing it as one of the two hitherto unidentified volcanic triggers of a period of stratospheric aerosol loading that profoundly impacted Northern Hemisphere climate and society between circa 536 and 550 CE. Our chronology is derived from 100 new radiocarbon measurements performed on three subfossil tree trunks enveloped in proximal TBJ pyroclastic deposits. We also reassess the eruption magnitude using terrestrial (El Salvador, Guatemala, Honduras) and near-shore marine TBJ tephra deposit thickness measurements. Together, our new constraints on the age, eruption size (43.6 km3 Dense Rock Equivalent of magma, magnitude = 7.0) and sulfur yield (∼9–90 Tg), along with Ilopango's latitude (13.7° N), squarely frame the TBJ as the major climate-forcing eruption of 539 or 540 CE identified in bipolar ice cores and sourced to the tropics. In addition to deepening appreciation of the TBJ eruption's impacts in Mesoamerica, linking it to the major Northern Hemisphere climatic downturn of the mid-6th century CE offers another piece in the puzzle of understanding Eurasian history of the period.
    Type: Article , PeerReviewed
    Format: other
    Format: text
    Format: image
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rafter, Patrick A; Herguera, Juan-Carlos; Southon, John R (2018): Extreme lowering of deglacial seawater radiocarbon recorded by both epifaunal and infaunal benthic foraminifera in a wood-dated sediment core. Climate of the Past, 14(12), 1977-1989, https://doi.org/10.5194/cp-14-1977-2018
    Publication Date: 2023-01-13
    Description: For over a decade, oceanographers have debated the interpretation and reliability of sediment microfossil records indicating extremely low seawater radiocarbon (14C) during the last deglaciation-observations that suggest a major disruption in marine carbon cycling coincident with rising atmospheric CO2 concentrations. Possible flaws in these records include poor age model controls, utilization of mixed, infaunal foraminifera species possibly influenced by changing porewater chemistry, and bioturbation. We have addressed these concerns using a glacial-interglacial record of epifaunal benthic foraminifera 14C on an ideal sedimentary age model (wood calibrated to atmosphere 14C). Our results affirm – with important caveats – the fidelity of these microfossil archives and confirm previous observations of highly depleted seawater 14C at intermediate depths in the deglacial northeast Pacific
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-07
    Keywords: Age, 14C; Age, 14C calibrated, CALIB 7.1 (Stuiver et al. 2017); Age, dated; Age, dated material; Age, dated standard error; Analytical method; Calendar age; Calendar age, maximum/old; Calendar age, minimum/young; Comment; Core; CORE; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; ET97-7T; Gulf of California; Sample ID
    Type: Dataset
    Format: text/tab-separated-values, 310 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-07
    Keywords: Age, 14C; Age, dated; Age, dated material; Age, dated standard error; Core; CORE; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Gulf of California; LPAZ-21PG; Sample ID
    Type: Dataset
    Format: text/tab-separated-values, 42 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Keywords: Age, dated; Age, dated material; Age, dated standard error; Comment; Core; CORE; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Gulf of California; LPAZ-21P; Sample ID
    Type: Dataset
    Format: text/tab-separated-values, 923 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: De Pol-Holz, Ricardo; Keigwin, Lloyd D; Southon, John R; Hebbeln, Dierk; Mohtadi, Mahyar (2010): No signature of abyssal carbon in intermediate waters off Chile during deglaciaition. Nature Geoscience, 3(3), 192-195, https://doi.org/10.1038/ngeo745
    Publication Date: 2023-06-27
    Description: At the end of the Last Glacial Maximum (19,000 to 11,000 years ago), atmospheric carbon dioxide concentrations rose while the Delta14C of atmospheric carbon dioxide declined**1, 2. These changes have been attributed to an injection of carbon dioxide with low radiocarbon activity from an oceanic abyssal reservoir that was isolated from the atmosphere for several thousand years before deglaciation**3. The current understanding points to the Southern Ocean as the main area of exchange between these reservoirs4. Intermediate water formed in the Southern Ocean surrounding Antarctica would have then carried the old carbon dioxide signature to the lower-latitude oceans**5, 6. Here we reconstruct the Delta14C signature of Antarctic Intermediate Water off the coast of Chile for the past 20,000 years, using paired 14C ages of benthic and planktonic foraminifera. In contrast to the above scenario, we find that the delta14C signature of the Antarctic Intermediate Water closely matches the modelled surface ocean Delta14C, precluding the influence of an old carbon source. We suggest that if the abyssal ocean is indeed the source of the radiocarbon-depleted carbon dioxide, an alternative path for the mixing and propagation of its carbon dioxide may be required to explain the observed changes in atmospheric carbon dioxide concentration and radiocarbon activity.
    Keywords: Age, 14C AMS; Age, dated; Age, dated standard deviation; Calendar age; Calendar age, standard deviation; Center for Marine Environmental Sciences; DEPTH, sediment/rock; Gravity corer (Kiel type); MARUM; Sample code/label; SL; SO161/5; SO161/5_22SL; Sonne; SPOC; Taxon/taxa; Δ14C
    Type: Dataset
    Format: text/tab-separated-values, 209 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ku, Teh-Lung; Southon, John R; Vogel, John S; Liang, Z C; Kusakabe, M; Nelson, D Erle (1985): 10Be distributions in Deep Sea Drilling Project Site 576 and Site 578 sediments studied by accelerator mass spectrometry. In: Heath GR; Burckle LH; et al. (eds.), Initial Reports of the Deep Sea Drilling Project, Washington (U.S. Govt. Printing Office), 86, 539-546, https://doi.org/10.2973/dsdp.proc.86.122.1985
    Publication Date: 2023-06-27
    Description: Extension of the 10Be geochronology for deep-sea sediments beyond the limit of late Pliocene age found in published works has been attempted. The results obtained on sediments from Deep Sea Drilling Project (DSDP) Sites 576 and 578 of Leg 86 suggest the feasibility of dating sediments as old as 12 to 15 m.y. At both sites, there have been large changes in sedimentation rate, with the Pleistocene sediments accumulating several times faster than those of the Pliocene, which in turn were deposited several times more rapidly than the late Miocene sediments. The Pleistocene-Pliocene section is considerably thicker in Hole 578 than in Hole 576B: the respective depths for the 7 m.y. time boundary in the two holes are about 125 and about 25 m. These 10Be-based age estimates are in agreement with the paleomagnetic stratigraphies established for the two sites. The suggested enhancement in the oceanic deposition of 10Be before 7 to 9 m.y. ago, as noticed in manganese crusts, has found tentative support from the present sedimentary records. A preliminary search for 10Be production variation during a geomagnetic field reversal has been conducted. In Hole 578, an enhanced 10Be concentration is found in a sample close to the Brunhes/Matuyama reversal boundary. More detailed and systematic measurements are required to confirm this observation, which bears on the detailed behavior of the geomagnetic field during the reversal.
    Keywords: 86-576; 86-576B; 86-578; Atomic absorption spectrometry (AAS); Beryllium-10; Beryllium-10, standard deviation; Beryllium-10/Beryllium-9, standard deviation; Beryllium-10/Beryllium-9 ratio; Calcium carbonate; Deep Sea Drilling Project; DEPTH, sediment/rock; DRILL; Drilling/drill rig; DSDP; DSDP/ODP/IODP sample designation; Event label; Glomar Challenger; Leg86; North Pacific; Sample code/label; see reference(s)
    Type: Dataset
    Format: text/tab-separated-values, 201 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...