GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • PANGAEA  (340)
  • Nature Research  (3)
Publikationsart
Schlagwörter
Erscheinungszeitraum
  • 1
    facet.materialart.
    Unbekannt
    Nature Research
    In:  Nature Communications, 8 (1). Art.Nr. 1015.
    Publikationsdatum: 2020-02-06
    Beschreibung: Changes in tropical zonal atmospheric (Walker) circulation induce shifts in rainfall patterns along with devastating floods and severe droughts that dramatically impact the lives of millions of people. Historical records and observations of the Walker circulation over the 20th century disagree on the sign of change and therefore, longer climate records are necessary to better project tropical circulation changes in response to global warming. Here we examine proxies for thermocline depth and rainfall in the eastern tropical Indian Ocean during the globally colder Last Glacial Maximum (19–23 thousand years ago) and for the past 3000 years. We show that increased thermocline depth and rainfall indicate a stronger-than-today Walker circulation during the Last Glacial Maximum, which is supported by an ensemble of climate simulations. Our findings underscore the sensitivity of tropical circulation to temperature change and provide evidence for a further weakening of the Walker circulation in response to greenhouse warming.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-11-14
    Beschreibung: The Indo-Pacific Warm Pool (IPWP) exerts a dominant role in global climate by releasing huge amounts of water vapour and latent heat to the atmosphere and modulating upper ocean heat content (OHC), which has been implicated in modern climate change1. The long-term variations of IPWP OHC and their effect on monsoonal hydroclimate are, however, not fully explored. Here, by combining geochemical proxies and transient climate simulations, we show that changes of IPWP upper (0–200 m) OHC over the past 360,000 years exhibit dominant precession and weaker obliquity cycles and follow changes in meridional insolation gradients, and that only 30%–40% of the deglacial increases are related to changes in ice volume. On the precessional band, higher upper OHC correlates with oxygen isotope enrichments in IPWP surface water and concomitant depletion in East Asian precipitation as recorded in Chinese speleothems. Using an isotope-enabled air–sea coupled model, we suggest that on precessional timescales, variations in IPWP upper OHC, more than surface temperature, act to amplify the ocean–continent hydrological cycle via the convergence of moisture and latent heat. From an energetic viewpoint, the coupling of upper OHC and monsoon variations, both coordinated by insolation changes on orbital timescales, is critical for regulating the global hydroclimate.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2023-08-01
    Beschreibung: Monsoons are the dominant seasonal mode of climate variability in the tropics and are critically important conveyors of atmospheric moisture and energy at a global scale. Predicting monsoons, which have profound impacts on regions that are collectively home to more than 70 per cent of Earth’s population, is a challenge that is difficult to overcome by relying on instrumental data from only the past few decades. Palaeoclimatic evidence of monsoon rainfall dynamics across different regions and timescales could help us to understand and predict the sensitivity and response of monsoons to various forcing mechanisms. This evidence suggests that monsoon systems exhibit substantial regional character.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Baumgart, Anne; Jennerjahn, Tim C; Mohtadi, Mahyar; Hebbeln, Dierk (2010): Distribution and burial of organic carbon in sediments from the Indian Ocean upwelling region off Java and Sumatra, Indonesia. Deep Sea Research Part I: Oceanographic Research Papers, 57(3), 458-467, https://doi.org/10.1016/j.dsr.2009.12.002
    Publikationsdatum: 2023-03-03
    Beschreibung: Sediments were sampled and oxygen profiles of the water column were determined in the Indian Ocean off west and south Indonesia in order to obtain information on the production, transformation, and accumulation of organic matter (OM). The stable carbon isotope composition (d13Corg) in combination with C/N ratios depicts the almost exclusively marine origin of sedimentary organic matter in the entire study area. Maximum concentrations of organic carbon (Corg) and nitrogen (N) of 3.0% and 0.31%, respectively, were observed in the northern Mentawai Basin and in the Savu and Lombok basins. Minimum d15N values of 3.7 per mil were measured in the northern Mentawai Basin, whereas they varied around 5.4 per mil at stations outside this region. Minimum bottom water oxygen concentrations of 1.1 mL L**1, corresponding to an oxygen saturation of 16.1%, indicate reduced ventilation of bottom water in the northern Mentawai Basin. This low bottom water oxygen reduces organic matter decomposition, which is demonstrated by the almost unaltered isotopic composition of nitrogen during early diagenesis. Maximum Corg accumulation rates (CARs) were measured in the Lombok (10.4 g C m**-2 yr**-1) and northern Mentawai basins (5.2 g C m**-2 yr**-1). Upwelling-induced high productivity is responsible for the high CAR off East Java, Lombok, and Savu Basins, while a better OM preservation caused by reduced ventilation contributes to the high CAR observed in the northern Mentawai Basin. The interplay between primary production, remineralisation, and organic carbon burial determines the regional heterogeneity. CAR in the Indian Ocean upwelling region off Indonesia is lower than in the Peru and Chile upwellings, but in the same order of magnitude as in the Arabian Sea, the Benguela, and Gulf of California upwellings, and corresponds to 0.1-7.1% of the global ocean carbon burial. This demonstrates the relevance of the Indian Ocean margin off Indonesia for the global OM burial.
    Schlagwort(e): Center for Marine Environmental Sciences; GeoB10008-4; GeoB10010-1; GeoB10014-1; GeoB10015-1; GeoB10016-2; GeoB10022-6; GeoB10024-3; GeoB10025-3; GeoB10026-2; GeoB10027-3; GeoB10028-4; GeoB10029-3; GeoB10031-3; GeoB10033-5; GeoB10034-3; GeoB10036-3; GeoB10037-2; GeoB10038-3; GeoB10039-3; GeoB10040-3; GeoB10041-3; GeoB10042-2; GeoB10043-2; GeoB10044-3; GeoB10047-1; GeoB10049-5; GeoB10050-1; GeoB10058-1; GeoB10059-1; GeoB10061-4; GeoB10063-5; GeoB10064-5; GeoB10065-9; GeoB10066-6; GeoB10067-5; GeoB10068-2; GeoB10069-4; GeoB10070-6; MARUM; MUC; MultiCorer; PABESIA; SO184/1; SO184/2; Sonne
    Materialart: Dataset
    Format: application/zip, 2 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Hessler, Ines; Young, Martin; Holzwarth, Ulrike; Mohtadi, Mahyar; Lückge, Andreas; Behling, Hermann (2013): Imprint of eastern Indian Ocean surface oceanography on modern organic-walled dinoflagellate cyst assemblages. Marine Micropaleontology, 101, 89-105, https://doi.org/10.1016/j.marmicro.2013.02.005
    Publikationsdatum: 2023-03-03
    Beschreibung: Assemblages of organic-walled dinoflagellate cysts (dinocysts) from 116 marine surface samples have been analysed to assess the relationship between the spatial distribution of dinocysts and modern local environmental conditions [e.g. sea surface temperature (SST), sea surface salinity (SSS), productivity] in the eastern Indian Ocean. Results from the percentage analysis and statistical methods such as multivariate ordination analysis and end-member modelling, indicate the existence of three distinct environmental and oceanographic regions in the study area. Region 1 is located in western and eastern Indonesia and controlled by high SSTs and a low nutrient content of the surface waters. The Indonesian Throughflow (ITF) region (Region 2) is dominated by heterotrophic dinocyst species reflecting the region's high productivity. Region 3 is encompassing the area offshore north-west and west Australia which is characterised by the water masses of the Leeuwin Current, a saline and nutrient depleted southward current featuring energetic eddies.
    Schlagwort(e): Center for Marine Environmental Sciences; MARUM
    Materialart: Dataset
    Format: application/zip, 5 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Martínez Fontaine, Consuelo; De Pol-Holz, Ricardo; Michel, Elisabeth; Siani, Giuseppe; Reyes-Macaya, Dharma; Martínez Méndez, Gema; DeVries, Tim; Stott, Lowell D; Southon, John; Mohtadi, Mahyar; Hebbeln, Dierk (2019): Ventilation of the deep ocean carbon reservoir during the last deglaciation: results from the southeast pacific. Paleoceanography and Paleoclimatology, 34(12), 2080-2097, https://doi.org/10.1029/2019PA003613
    Publikationsdatum: 2023-03-03
    Beschreibung: Supplementary material for Martínez Fontaine et al., 2019 (Table S1), including the radiocarbon ages in benthonic and planktonic foraminifera in six cores in the Chilean margin, beetween ~31°S and ~36°S (Table S3). The age models for the cores are detailed in Martínez Fontaine et al., 2019 and were produced using the information on planktonic δ13C (Table S2). Also included are the Δ14C resulting from the age models.
    Schlagwort(e): Center for Marine Environmental Sciences; Deglaciation; MARUM; radiocarbon; Southeast Pacific
    Materialart: Dataset
    Format: application/zip, 2 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Martínez Méndez, Gema; Hebbeln, Dierk; Mohtadi, Mahyar; Lamy, Frank; De Pol-Holz, Ricardo; Reyes-Macaya, Dharma; Freudenthal, Tim (2013): Changes in the advection of Antarctic Intermediate Water to the northern Chilean coast during the last 970 kyr. Paleoceanography, 28, 1-12, https://doi.org/10.1002/palo.20047
    Publikationsdatum: 2023-03-03
    Beschreibung: The Antarctic Intermediate Water (AAIW) is a key player in global-scale oceanic overturning processes and an important conduit for heat, fresh water, and carbon transport. The AAIW past variability is poorly understood mainly due to the lack of sedimentary archives at intermediate water depths. We present records of benthic stable isotopes from sediments retrieved with the seafloor drill rig MARUM-MeBo at 956 m water depth off northern Chile (GeoB15016, 27°29.48'S, 71°07.58'W) that extend back to 970 ka. The sediments at this site are presently deposited at the boundary between AAIW and Pacific Deep Water (PDW). For previous peak interglacials, our results reveal similar benthic d13C values at site GeoB15016 and of a newly generated stack of benthic d13C from various deep Pacific cores representing the "average PDW." This suggests, unlike today, the absence of AAIW at the site and the presence of nearly pure PDW. In contrast, more positive d13C values at site GeoB15016 compared to the stack imply a considerable AAIW contribution during cold phases of interglacials and especially during glacials. Besides, we used three short sediment cores to reconstruct benthic d13C values from the AAIW core during the last glacial and found a d13C signature similar to today's. Assuming that this was the case also for the past 970 kyr, we demonstrate that sea level changes and latitudinal migrations of the AAIW formation site can only account for about 50% of the full range of past d13C increases at site GeoB15016 during cold periods. Other processes that could explain the remaining of the positive d13C anomalies are increases in glacial AAIW production and/or deeper convection of the AAIW with respect to preceding interglacials.
    Schlagwort(e): Center for Marine Environmental Sciences; MARUM
    Materialart: Dataset
    Format: application/zip, 11 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Kuhnert, Henning; Kuhlmann, Holger; Mohtadi, Mahyar; Meggers, Helge; Baumann, Karl-Heinz; Pätzold, Jürgen (2014): Holocene tropical western Indian Ocean sea surface temperatures in covariation with climatic changes in the Indonesian region. Paleoceanography, https://doi.org/10.1002/2013PA002555
    Publikationsdatum: 2023-03-03
    Beschreibung: The sea surface temperature (SST) of the tropical Indian Ocean is a major component of global climate teleconnections. While the Holocene SST history is documented for regions affected by the Indian and Arabian monsoons, data from the near-equatorial western Indian Ocean are sparse. Reconstructing past zonal and meridional SST gradients requires additional information on past temperatures from the western boundary current region. We present a unique record of Holocene SST and thermocline depth variations in the tropical western Indian Ocean as documented in foraminiferal Mg/Ca ratios and d18O from a sediment core off northern Tanzania. For Mg/Ca and thermocline d18O, most variance is concentrated in the centennial to bicentennial periodicity band. On the millennial time scale, an early to mid-Holocene (~7.8-5.6 ka) warm phase is followed by a temperature drop by up to 2°C, leading to a mid-Holocene cool interval (5.6-4.2 ka). The shift is accompanied by an initial reduction in the difference between surface and thermocline foraminiferal d18O, consistent with the thickening of the mixed layer and suggestions of a strengthened Walker circulation. However, we cannot confirm the expected enhanced zonal SST gradient, as the cooling of similar magnitude had previously been found in SSTs from the upwelling region off Sumatra and in Flores air temperatures. The SST pattern probably reflects the tropical Indian Ocean expression of a large-scale climate anomaly rather than a positive Indian Ocean Dipole-like mean state.
    Schlagwort(e): Center for Marine Environmental Sciences; MARUM
    Materialart: Dataset
    Format: application/zip, 2 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Mohtadi, Mahyar; Prange, Matthias; Oppo, Delia W; De Pol-Holz, Ricardo; Merkel, Ute; Zhang, Xiao; Steinke, Stephan; Lückge, Andreas (2014): North Atlantic forcing of tropical Indian Ocean climate. Nature, 509(7498), 76-80, https://doi.org/10.1038/nature13196
    Publikationsdatum: 2023-03-03
    Beschreibung: The response of the tropical climate in the Indian Ocean realm to abrupt climate change events in the North Atlantic Ocean is contentious. Repositioning of the intertropical convergence zone is thought to have been responsible for changes in tropical hydroclimate during North Atlantic cold spells1, 2, 3, 4, 5, but the dearth of high-resolution records outside the monsoon realm in the Indian Ocean precludes a full understanding of this remote relationship and its underlying mechanisms. Here we show that slowdowns of the Atlantic meridional overturning circulation during Heinrich stadials and the Younger Dryas stadial affected the tropical Indian Ocean hydroclimate through changes to the Hadley circulation including a southward shift in the rising branch (the intertropical convergence zone) and an overall weakening over the southern Indian Ocean. Our results are based on new, high-resolution sea surface temperature and seawater oxygen isotope records of well-dated sedimentary archives from the tropical eastern Indian Ocean for the past 45,000 years, combined with climate model simulations of Atlantic circulation slowdown under Marine Isotope Stages 2 and 3 boundary conditions. Similar conditions in the east and west of the basin rule out a zonal dipole structure as the dominant forcing of the tropical Indian Ocean hydroclimate of millennial-scale events. Results from our simulations and proxy data suggest dry conditions in the northern Indian Ocean realm and wet and warm conditions in the southern realm during North Atlantic cold spells.
    Schlagwort(e): Center for Marine Environmental Sciences; MARUM
    Materialart: Dataset
    Format: application/zip, 4 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Steinke, Stephan; Prange, Matthias; Feist, Christin; Groeneveld, Jeroen; Mohtadi, Mahyar (2014): Upwelling variability off southern Indonesia over the past two millennia. Geophysical Research Letters, 41(21), 7684-7693, https://doi.org/10.1002/2014GL061450
    Publikationsdatum: 2023-03-03
    Beschreibung: Modern variability in upwelling off southern Indonesia is strongly controlled by the Australian-Indonesian monsoon and the El Niño-Southern Oscillation, but multi-decadal to centennial-scale variations are less clear. We present high-resolution records of upper water column temperature, thermal gradient and relative abundances of mixed layer- and thermocline-dwelling planktonic foraminiferal species off southern Indonesia for the past two millennia that we use as proxies for upwelling variability. We find that upwelling was generally strong during the Little Ice Age (LIA) and weak during the Medieval Warm Period (MWP) and the Roman Warm Period (RWP). Upwelling is significantly anti-correlated to East Asian summer monsoonal rainfall and the zonal equatorial Pacific temperature gradient. We suggest that changes in the background state of the tropical Pacific may have substantially contributed to the centennial-scale upwelling trends observed in our records. Our results implicate the prevalence of an El Niño-like mean state during the LIA and a La Niña-like mean state during the MWP and the RWP.
    Schlagwort(e): Center for Marine Environmental Sciences; MARUM
    Materialart: Dataset
    Format: application/zip, 4 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...