GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] We used illegitimate transcription in lymphoblastoid cell lines6 to obtain laminin α2 chain mRNA from probands of consanguineous laminin α2 and non-consanguineous chain-deficient families for mutation analysis by RT-PCR. Twenty-four pairs of overlapping primers (see Methods) were ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1072-8368
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] DNA-adenine methylation at certain GATC sites plays a pivotal role in bacterial and phage gene expression as well as bacterial virulence. We report here the crystal structures of the bacteriophage T4Dam DNA adenine methyltransferase (MTase) in a binary complex with the methyl-donor product ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  EPIC3Nature, Nature Publishing Group, 512(7514), pp. 290-294, ISSN: 0028-0836
    Publication Date: 2014-09-04
    Description: During glacial periods of the Late Pleistocene, an abundance of proxy data demonstrates the existence of large and repeated millennial-scale warming episodes, known as Dansgaard–Oeschger (DO) events1. This ubiquitous feature of rapid glacial climate change can be extended back as far as 800,000 years before present (BP) in the ice core record2, and has drawn broad attention within the science and policy-making communities alike3. Many studies have been dedicated to investigating the underlying causes of these changes, but no coherent mechanism has yet been identified3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15. Here we show, by using a comprehensive fully coupled model16, that gradual changes in the height of the Northern Hemisphere ice sheets (NHISs) can alter the coupled atmosphere–ocean system and cause rapid glacial climate shifts closely resembling DO events. The simulated global climate responses—including abrupt warming in the North Atlantic, a northward shift of the tropical rainbelts, and Southern Hemisphere cooling related to the bipolar seesaw—are generally consistent with empirical evidence1, 3, 17. As a result of the coexistence of two glacial ocean circulation states at intermediate heights of the ice sheets, minor changes in the height of the NHISs and the amount of atmospheric CO2 can trigger the rapid climate transitions via a local positive atmosphere–ocean–sea-ice feedback in the North Atlantic. Our results, although based on a single model, thus provide a coherent concept for understanding the recorded millennial-scale variability and abrupt climate changes in the coupled atmosphere–ocean system, as well as their linkages to the volume of the intermediate ice sheets during glacials.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-04-14
    Description: The Asian monsoon (AM) played an important role in the dynastic history of China, yet it remains unknown whether AM-mediated shifts in Chinese societies affect earth surface processes to the point of exceeding natural variability. Here, we present a dust storm intensity record dating back to the first unified dynasty of China (the Qin Dynasty, 221–207 B.C.E.). Marked increases in dust storm activity coincided with unified dynasties with large populations during strong AM periods. By contrast, reduced dust storm activity corresponded to decreased population sizes and periods of civil unrest, which was co-eval with a weakened AM. The strengthened AM may have facilitated the development of Chinese civilizations, destabilizing the topsoil and thereby increasing the dust storm frequency. Beginning at least 2000 years ago, human activities might have started to overtake natural climatic variability as the dominant controls of dust storm activity in eastern China.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-03
    Description: The dominant feature of large-scale mass transfer in the modern ocean is the Atlantic meridional overturning circulation (AMOC). The geometry and vigour of this circulation influences global climate on various timescales. Palaeoceanographic evidence suggests that during glacial periods of the past 1.5 million years the AMOC had markedly different features from today; in the Atlantic basin, deep waters of Southern Ocean origin increased in volume while above them the core of the North Atlantic Deep Water (NADW) shoaled. An absence of evidence on the origin of this phenomenon means that the sequence of events leading to global glacial conditions remains unclear. Here we present multi-proxy evidence showing that northward shifts in Antarctic iceberg melt in the Indian–Atlantic Southern Ocean (0–50°E) systematically preceded deep-water mass reorganizations by one to two thousand years during Pleistocene-era glaciations. With the aid of iceberg-trajectory model experiments, we demonstrate that such a shift in iceberg trajectories during glacial periods can result in a considerable redistribution of freshwater in the Southern Ocean. We suggest that this, in concert with increased sea-ice cover, enabled positive buoyancy anomalies to ‘escape’ into the upper limb of the AMOC, providing a teleconnection between surface Southern Ocean conditions and the formation of NADW. The magnitude and pacing of this mechanism evolved substantially across the mid-Pleistocene transition, and the coeval increase in magnitude of the ‘southern escape’ and deep circulation perturbations implicate this mechanism as a key feedback in the transition to the ‘100-kyr world’, in which glacial–interglacial cycles occur at roughly 100,000-year periods.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: The Last Glacial Maximum (LGM, 21 000 years ago) is one of the suite of paleoclimate simulations included in the current phase of the Coupled Model Intercomparison Project (CMIP6). It is an interval when insolation was similar to the present, but global ice volume was at a maximum, eustatic sea level was at or close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. The LGM has been a focus for the Paleoclimate Modelling Intercomparison Project (PMIP) since its inception, and thus many of the problems that might be associated with simulating such a radically different climate are well documented. The LGM state provides an ideal case study for evaluating climate model performance because the changes in forcing and temperature between the LGM and pre-industrial are of the same order of magnitude as those projected for the end of the 21st century. Thus, the CMIP6 LGM experiment could provide additional information that can be used to constrain estimates of climate sensitivity. The design of the Tier 1 LGM experiment (lgm) includes an assessment of uncertainties in boundary conditions, in particular through the use of different reconstructions of the ice sheets and of the change in dust forcing. Additional (Tier 2) sensitivity experiments have been designed to quantify feedbacks associated with land-surface changes and aerosol loadings, and to isolate the role of individual forcings. Model analysis and evaluation will capitalize on the relative abundance of paleoenvironmental observations and quantitative climate reconstructions already available for the LGM.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Rapid monsoon changes since the last deglaciation remain poorly constrained due to the scarcity of geological archives. Here we present a high-resolution scanning X-ray fluorescence (XRF) analysis of a 13.5 m terrace succession on the western Chinese Loess Plateau (CLP) to infer rapid monsoon changes since the last deglaciation. Our results indicate that Rb∕Sr and Zr∕Rb are sensitive indicators of chemical weathering and wind sorting, respectively, which are further linked to the strength of the East Asian summer monsoon (EASM) and the East Asian winter monsoon (EAWM). During the last deglaciation, two cold intervals of the Heinrich event 1 and Younger Dryas were characterized by intensified winter monsoon and weakened summer monsoon. The EAWM gradually weakened at the beginning of the Holocene, while the EASM remained steady till 9.9 ka and then grew stronger. Both the EASM and EAWM intensities were relatively weak during the Middle Holocene, indicating a mid-Holocene climatic optimum. Rb∕Sr and Zr∕Rb exhibit an antiphase relationship between the summer and winter monsoon changes on a centennial timescale during 16–1 ka. Comparison of these monsoon changes with solar activity and North Atlantic cooling events reveals that both factors can lead to abrupt changes on a centennial timescale in the Early Holocene. During the Late Holocene, North Atlantic cooling became the major forcing of centennial monsoon events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-03-10
    Description: Geological records show that vast proglacial lakes existed along the land terminating margins of palaeo ice sheets in Europe and North America. Proglacial lakes impact ice sheet dynamics by imposing marine-like boundary conditions at the ice margin. These lacustrine boundary conditions include changes in the ice sheet’s geometry, stress balance and frontal ablation and therefore affect the entire ice sheet’s mass balance. This interaction, however, has not been rigorously implemented in ice sheet models. In this study, the implementation of an adaptive lake boundary into the Parallel Ice Sheet Model (PISM) is described and applied to the glacial retreat of the Laurentide Ice Sheet (LIS). The results show that the presence of proglacial lakes locally enhances the ice flow. Along the continental ice margin, ice streams and ice lobes can be observed. Lacustrine terminating ice streams cause immense thinning of the ice sheet’s interior and thus play a significant role in the demise of the LIS. Due to the presence of lakes, a process similar to the marine ice sheet instability causes the collapse of the ice saddle over Hudson Bay, which blocked drainage via the Hudson Strait. In control experiments without a lake model, Hudson Bay is still glaciated at the end of the simulation. Future studies should target the development of parametrizations that better describe the glacial-lacustrine interactions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-08-01
    Description: During the Late Pleistocene and Holocene retreat of paleo-ice sheets in North America and Europe, vast proglacial lakes existed along the land terminating margins. These proglacial lakes impacted ice sheet dynamics by imposing boundary conditions analogous to a marine terminating margin. Such lacustrine boundary conditions cause changes in the ice sheet geometry, stress balance and frontal ablation and therefore affect the mass balance of the entire ice sheet. Despite this, dynamically evolving proglacial lakes have rarely been considered in detail in ice sheet modeling endeavors. In this study, we describe the implementation of an adaptive lake boundary in the Parallel Ice Sheet Model (PISM), which we call PISM-LakeCC. We test our model with a simplified glacial retreat setup of the Laurentide Ice Sheet (LIS). By comparing the experiments with lakes to control runs with no lakes, we show that the presence of proglacial lakes locally enhances the ice flow, which leads to a lowering of the ice sheet surface. In some cases, this also results in an advance of the ice margin and the emergence of ice lobes. In the warming climate, increased melting on the lowered ice surface drives the glacial retreat. For the LIS, the presence of lakes triggers a process similar to marine ice sheet instability, which caused the collapse of the ice saddle over Hudson Bay. In the control experiments without lakes, Hudson Bay is still glaciated when the climate reaches present-day (PD) conditions. The results of our study demonstrate that glacio-lacustrine interactions play a significant role in the retreat of land terminating ice sheet margins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...