GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: Variations in Amazonian hydrology and forest cover have major consequences for the global carbon and hydrological cycles as well as for biodiversity. Yet, the climate and vegetation history of the lowland Amazon basin and its effect on biogeography remain debated due to the scarcity of suitable high-resolution paleoclimate records. Here, we use the isotopic composition (δD and C) of plant-waxes from a high-resolution marine sediment core collected offshore the Amazon River to reconstruct the climate and vegetation history of the integrated lowland Amazon basin for the period from 50,000 to 12,800 yr before present. Our results show that δD values from the Last Glacial Maximum were more enriched than those from Marine Isotope Stage (MIS) 3 and the present-day. We interpret this trend to reflect long-term changes in precipitation and atmospheric circulation, with overall drier conditions during the Last Glacial Maximum. Our results thus suggest a dominant glacial forcing of the climate in lowland Amazonia. In addition to previously suggested thermodynamic mechanisms of precipitation change, which are directly related to temperature, we conclude that changes in atmospheric circulation are crucial to explain the temporal evolution of Amazonian rainfall variations, as demonstrated in climate model experiments. Our vegetation reconstruction based on C values shows that the Amazon rainforest was affected by intrusions of savannah or more open vegetation types in its northern sector during Heinrich Stadials, while it was resilient to glacial drying. This suggests that biogeographic patterns in tropical South America were affected by Heinrich Stadials in addition to glacial–interglacial climate variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Surface and thermocline conditions of the Western Pacific Warm Pool (WPWP) reflect changes in regional and basin scale ocean and atmosphere circulations and in turn may affect climate globally. Previous studies suggest that a range of factors influences the WPWP on different timescales, however the precise forcings and mechanisms are unclear. Combining surface and thermocline records from sediment cores offshore Papua New Guinea we explore the influence of local and remote processes on the WPWP in response to astronomical forcing and changing glacial-interglacial boundary conditions over the past 110 kyr. We find that thermocline temperatures change with variations in Earth's obliquity with higher temperatures coinciding with high obliquity, which is attributed to variations in subduction and advection of the South Pacific Tropical Water. In contrast, rainfall variations associated with meridional migrations of the Intertropical Convergence Zone are primarily driven by changes in insolation due to precession. Records of bulk sedimentary Ti/Ca and foraminiferal Nd/Ca indicate an additional influence of obliquity, which, however, cannot unambiguously be related to changes in precipitation. Finally, our results suggest a thermocline deepening during the Last Glacial Maximum (LGM). A compilation of available proxy records illustrates a dipole-like pattern of LGM thermocline depth anomalies with a shoaling (deepening) in the northern (southern) WPWP. A comparison of the proxy compilation with an ensemble of Paleoclimate Model Intercomparison Project (PMIP) climate model simulations reveals that the spatial pattern of LGM thermocline depth anomalies is mainly attributable to a contraction of the Pacific Walker circulation on its western side.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: The semi-arid northeastern (NE) Brazil vegetation is largely dominated by Caatinga, one of the largest and richest dry forests in the world. Caatinga is a strategic biome, since it has borders with Cerrado, Atlantic forests and the Amazon, acting as a potential corridor (or barrier) for biotic interchange between these regions during evolutionary times. Therefore, accurate reconstructions of past vegetation, ecological and hydrological changes in this area are critical to understanding the dynamics of biome boundaries that may play an important role in dispersal and diversification mechanisms and, more specifically, the link between the long-term climate variability and tropical biodiversity. Here, we present high-resolution palynological and elemental data from marine core GeoB16205-4 retrieved off the Parnaíba River mouth (NE Brazil) mainly covering the Younger Dryas (YD). We show that the YD interval was predominantly wet in NE Brazil, yet it was not homogenous and two distinct phases could be distinguished. A marked intensification of wet conditions between ∼12.3 and 11.6 cal kyr BP was recorded by the expansion of tropical rainforest and tree ferns. These results are in agreement with the transient TraCE-21k coupled climate model simulation. We infer that the second pluvial phase of the YD is related to a weak AMOC due to meltwater pulses in the North Atlantic, which forces a southward shift of the Intertropical Convergence Zone and its associated rainfall. Our records provide new evidence on the establishment of an “eastern forest corridor” in the nowadays semi-arid Caatinga allowing for past biotic interchanges of plant species.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: The early Pliocene warm phase was characterized by high sea surface temperatures and a deep thermocline in the eastern equatorial Pacific. A new hypothesis suggests that the progressive closure of the Panamanian seaway contributed substantially to the termination of this zonally symmetric state in the equatorial Pacific. According to this hypothesis, intensification of the Atlantic meridional overturning circulation (AMOC) – induced by the closure of the gateway – was the principal cause of equatorial Pacific thermocline shoaling during the Pliocene. In this study, twelve Panama seaway sensitivity experiments from eight ocean/climate models of different complexity are analyzed to examine the effect of an open gateway on AMOC strength and thermocline depth. All models show an eastward Panamanian net throughflow, leading to a reduction in AMOC strength compared to the corresponding closed-Panama case. In those models that do not include a dynamic atmosphere, deepening of the equatorial Pacific thermocline appears to scale almost linearly with the throughflow-induced reduction in AMOC strength. Models with dynamic atmosphere do not follow this simple relation. There are indications that in four out of five models equatorial wind-stress anomalies amplify the tropical Pacific thermocline deepening. In summary, the models provide strong support for the hypothesized relationship between Panama closure and equatorial Pacific thermocline shoaling. Highlights: ► We study the effect of the Panama seaway on Pacific equatorial thermocline depth. ► Results from twelve model experiments are examined. ► Eastward net throughflow leads to a reduction in Atlantic overturning. ► We find a relationship between Panama closure and Pacific thermocline depth.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Highlights: • Threshold behavior in AMOC stability as response to freshwater perturbations in different background climate conditions. • The AMOC was more stable to freshwater forcing under glacial conditions, e.g. LGM. • Millennial-scale Dansgaard–Oeschger-type climate variability suppressed due to more stable ocean circulation. Abstract: Paleoclimatic records reveal that millennial-scale climate variability during the Pleistocene was most pronounced during intermediate glacial conditions, like Marine Isotope Stage 3 (MIS3), rather than during interglacial and fully glaciated climates, like the Last Glacial Maximum (LGM). The rapid transitions between cold stadials and warm interstadials recorded in Greenland ice cores during MIS3, referred to as Dansgaard–Oeschger (D-O) events, have been correlated with millennial-scale climate variations worldwide. Although the origin of D-O events is a matter of controversy, striking evidence shows that variations in the strength of the Atlantic meridional overturning circulation (AMOC) were involved. Therefore, understanding the stability properties of the ocean circulation under different background climate conditions is key to understanding D-O millennial-scale climate variability. In the present study, the stability of the AMOC to northern high-latitude freshwater perturbations under MIS3 and LGM boundary conditions is investigated by using the coupled climate model CCSM3. Stability diagrams constructed from a large set of equilibrium experiments reveal a nonlinear dependence of AMOC strength on freshwater forcing under both MIS3 and LGM conditions. The MIS3 baseline state is close to an AMOC stability threshold, which makes the MIS3 climate unstable with respect to minor perturbations. A similar threshold behavior in AMOC stability is observed under LGM conditions; however, larger freshwater perturbations are necessary to pass the threshold and weaken the AMOC. The threshold’s displacement relative to the MIS3 background climate is attributable to differences in the atmospheric hydrologic cycle and North Atlantic sea ice transport. Different atmospheric moisture transports are attributable to thermodynamic and dynamic processes related to differences in greenhouse gas forcing and ice-sheet height between MIS3 and the LGM. We conclude that the higher stability of the AMOC during the LGM is a physically plausible explanation for millennial-scale D-O-type climate variability being suppressed under full glacial conditions, whereas minor perturbations in freshwater fluxes could have triggered D-O climate shifts during MIS3.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-01-31
    Description: Continental and marine paleoclimate archives from northwestern and northeastern South America recorded positive precipitation anomalies during Heinrich Stadials (HS). These anomalies have been classically attributed to enhanced austral summer (monsoon) precipitation. However, the lack of marine paleoclimate records off eastern South America as well as inconsistencies between southeastern South American continental and marine records hamper a comprehensive understanding of the mechanism responsible for (sub-) tropical South American hydroclimate response to HS. Here we investigate piston core M125-95-3 collected off eastern South America (10.94°S) and simulate South American HS conditions with a high-resolution version of an atmosphere-ocean general circulation model. Further, meridional changes in precipitation over (sub-) tropical South America were assessed with a thorough compilation of previously available marine paleorecords. Our ln(Ti/Ca) and ln(Fe/K) data show increases during HS6-Younger Dryas. It is the first core off eastern South America and the southernmost from the Atlantic continental margin of South America that unequivocally records HS-related positive precipitation anomalies. Based on our new data, model results and the compilation of available marine records, we propose a new mechanism for the positive precipitation anomalies over tropical South America during HS. The new mechanism involves austral summer precipitation increases only over eastern South America while the rest of tropical South America experienced precipitation increases during the winter, challenging the widely held assumption of a strengthened monsoon. South American precipitation changes were triggered by dynamic and thermodynamic processes including a stronger moisture supply from the equatorial North Atlantic (tropical South Atlantic) in austral winter (summer).
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Despite its great ecological importance, the main factors governing tree cover in tropical savannas as well as savanna-forest boundaries are still largely unknown. Here we address this issue by investigating marine sediment records of long-chain n-alkane stable carbon (δ13Cwax) and hydrogen (δDwax) isotopes from a core collected off eastern tropical South America spanning the last ca. 45 thousand years. While δ13Cwax is a proxy for the main photosynthetic pathway of terrestrial vegetation, tracking the relative proportion of C3 (mainly trees) versus C4 (mainly grasses) plants, δDwax is a proxy for continental precipitation, tracking the intensity of rainfall. The investigated core was collected off the mouth of the São Francisco River drainage basin, a tropical savanna-dominated region with dry austral autumn, winter and spring. On top of millennial-scale changes, driven by anomalies in the amount of precipitation associated with Heinrich Stadials, we identify a marked obliquity control over the expansion and contraction of tree and grass cover. During periods of maximum (minimum) obliquity, trees (grasses) reached maximum coverage. We suggest that maximum (minimum) obliquity decreased (increased) the length of the dry season allowing (hampering) the expansion of tree-dominated vegetation. Periods of maximum obliquity induced an anomalous heating (cooling) of the summer (winter) hemisphere that in combination with a delayed response of the climate system slightly increased autumn precipitation over the São Francisco River drainage basin, through a shift of the Intertropical Convergence Zone towards or further into the anomalously heated hemisphere. We found that atmospheric CO2 concentration has only a secondary effect on tree cover. Our results underline the importance of the dry season length as a governing factor in the long-term control of tree cover in tropical landscapes.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-01-04
    Description: Highlights: • Temperature anomalies for the Mid-Holocene compared to preindustrial are significantly different in the low- and high-resolution versions of the atmospheric model ECHAM5 • For summer, shortwave cloud radiative forcing emerges as an important factor. • For boreal winter, differences are mainly related to circulation changes. • Anomaly differences are regionally as large as the mid-Holocene minus preindustrial temperature signals. Abstract: This study evaluates the dependence of simulated surface air temperatures on model resolution and orography for the mid-Holocene. Sensitivity experiments with the atmospheric general circulation model ECHAM5 are performed with low (∼3.75°, 19 vertical levels) and high (∼1.1°, 31 vertical levels) resolution. Results are compared to the respective preindustrial runs. It is found that the large-scale temperature anomalies for the mid-Holocene (compared to preindustrial) are significantly different in the low- and high-resolution versions. For boreal winter, differences are mainly related to circulation changes caused by the response to thermal forcing in conjunction with orographic resolution. For summer, shortwave cloud radiative forcing emerges as an important factor. The anomaly differences (low minus high resolution version) in the Northern Hemisphere are regionally as large as the anomalous mid-Holocene temperature signals. Furthermore, they depend on the applied surface boundary conditions. We conclude that the resolution matters for the Northern Hemisphere response in mid-Holocene simulations, which should be taken into account in model-model and data-model comparisons.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-12-14
    Description: Though primarily driven by insolation changes associated with well-known variations in Earth's astronomical parameters, the response of the climate system during interglacials includes a diversity of feedbacks involving the atmosphere, ocean, sea ice, vegetation and land ice. A thorough multi-model-data comparison is essential to assess the ability of climate models to resolve interglacial temperature trends and to help in understanding the recorded climatic signal and the underlying climate dynamics. We present the first multi-model-data comparison of transient millennial-scale temperature changes through two intervals of the Present Interglacial (PIG; 8–1.2 ka) and the Last Interglacial (LIG; 123–116.2 ka) periods. We include temperature trends simulated by 9 different climate models, alkenone-based temperature reconstructions from 117 globally distributed locations (about 45% of them within the LIG) and 12 ice-core-based temperature trends from Greenland and Antarctica (50% of them within the LIG). The definitions of these specific interglacial intervals enable a consistent inter-comparison of the two intervals because both are characterised by minor changes in atmospheric greenhouse gas concentrations and more importantly by insolation trends that show clear similarities. Our analysis shows that in general the reconstructed PIG and LIG Northern Hemisphere mid-to-high latitude cooling compares well with multi-model, mean-temperature trends for the warmest months and that these cooling trends reflect a linear response to the warmest-month insolation decrease over the interglacial intervals. The most notable exception is the strong LIG cooling trend reconstructed from Greenland ice cores that is not simulated by any of the models. A striking model-data mismatch is found for both the PIG and the LIG over large parts of the mid-to-high latitudes of the Southern Hemisphere where the data depicts negative temperature trends that are not in agreement with near zero trends in the simulations. In this area, the positive local summer insolation trend is counteracted in climate models by an enhancement of the Southern Ocean summer sea-ice cover and/or an increase in Southern Ocean upwelling. If the general picture emerging from reconstructions is realistic, then the model-data mismatch in mid and high Southern Hemisphere latitudes implies that none of the models is able to resolve the correct balance of these feedbacks, or, alternatively, that interglacial Southern Hemisphere temperature trends are driven by mechanisms which are not included in the transient simulations, such as changes in the Antarctic ice sheet or meltwater-induced changes in the overturning circulation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...