GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • GEOMAR Katalog / E-Books  (8)
  • Cham :Springer International Publishing AG,  (8)
  • 1
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Plant breeding. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (373 pages)
    Ausgabe: 1st ed.
    ISBN: 9783319204215
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- References -- Contents -- Production Sites of Reactive Oxygen Species (ROS) in Organelles from Plant Cells -- 1 Introduction -- 2 Chloroplasts -- 2.1 Production of Reactive Oxygen Species -- 2.2 ROS Scavenging Systems -- 3 Mitochondria -- 3.1 Ascorbate Biosynthesis -- 4 Plasma Membrane -- 5 Peroxisomes -- 5.1 H2O2-Producing System -- 5.2 Superoxide-Generating System -- 5.3 Peroxisomal Antioxidant Systems -- 6 Conclusions -- References -- What Do the Plant Mitochondrial Antioxidant and Redox Systems Have to Say Under Salinity, Drought, and Extreme Temperature? -- 1 Introduction -- 2 Mitochondria as Central Organelles in Stress -- 3 Mitochondrial ROS and RNS Production -- 3.1 ROS Production -- 3.2 NO Production -- 4 Antioxidant and Redox Systems in Plant Mitochondria -- 4.1 AOX -- 4.2 Mn-SOD -- 4.3 ASC-GSH Cycle -- 4.4 Peroxiredoxin System -- 5 Mitochondrial Antioxidant and Redox System Are Involved in Abiotic Stress Response -- 5.1 Mitochondrial Response Under Salinity -- 5.2 Mitochondrial Response Under Drought -- 5.3 Mitochondrial Response Under Extreme Temperatures -- 6 Conclusions and Prospectives -- References -- ROS as Key Players of Abiotic Stress Responses in Plants -- 1 Introduction -- 2 ROS-Generating Pathways and Their Regulatory Mechanisms in Plants -- 3 Involvement of ROS in the Regulation of Systemic Acquired Acclimation to Abiotic Stress -- 4 Temporal Coordination Between ROS and Other Signals in the Regulation of Systemic Signaling in Plants -- 5 Spatial Coordination Between ROS and Other Signals in the Regulation of Systemic Signaling in Plants -- 6 Integration of ROS Signals with Other Signals -- 7 Involvement of ROS in the Regulation of Retrograde Signaling -- 8 Programmed Cell Death Regulated by ROS Under Abiotic Stress -- 9 Conclusions -- References. , Redox Regulation and Antioxidant Defence During Abiotic Stress: What Have We Learned from Arabidopsis and Its Relatives? -- 1 Introduction -- 2 What is ROS and How it is Produced in Plant Cell? -- 2.1 Chloroplasts -- 2.2 Mitochondria -- 2.3 Peroxisomes -- 2.4 Other Sources of ROS Production -- 3 Antioxidant Defence Mechanism -- 3.1 Superoxide Dismutase -- 3.2 Catalase -- 3.3 Ascorbate Peroxidase and Other Ascorbate-Glutathione Cycle Enzymes -- 3.4 Glutathione Peroxidase -- 3.5 Peroxiredoxins -- 3.6 Nonenzymatic Antioxidants -- 4 ROS Formation and Antioxidant Defence Under Abiotic Stress -- 4.1 Salt Stress -- 4.2 Drought -- 4.3 Temperature Stress -- 4.4 Heavy Metal Stress -- 5 Conclusions -- References -- ROS Signaling: Relevance with Site of Production and Metabolism of ROS -- 1 Introduction -- 2 ROS: Types and Chemistry -- 3 ROS: Sites of Production -- 4 Oxidative Metabolism and Antioxidant System -- 5 Role of ROS in Signaling -- 6 Signaling in Growth and Development -- 7 Systemic Signaling and Acclimation -- References -- Heavy Metal-Induced Oxidative Stress in Plants: Response of the Antioxidative System -- 1 Introduction -- 2 Antioxidative Enzymes -- 2.1 Superoxide Dismutase -- 2.2 Antioxidative Enzymes That Remove H2O2 -- 2.2.1 Catalase -- 2.2.2 Peroxidases -- 2.2.3 Ascorbate-Glutathione Cycle -- 3 Nonenzymatic Antioxidants -- 3.1 Phenolics -- 3.2 Ascorbic Acid -- 3.3 Tocopherols and Tocotrienols -- 3.4 Amino Acids and Peptide Derivates -- 3.5 Soluble Sugars -- 3.6 Thiols/Glutathione -- 3.7 Carotenoids and Phycobilins -- 4 Conclusion -- References -- Arsenic and Chromium-Induced Oxidative Stress in Metal Accumulator and Non-accumulator Plants and Detoxification Mechanisms -- 1 Introduction -- 1.1 Prevalence of Arsenic and Chromium Stress -- 2 Phytotoxic Effects of As and Cr Stress in Hyperaccumulator and Non-hyperaccumulator Plants. , 2.1 Alterations in Physiological and Biochemical Mechanisms of Stressed Plants -- 2.2 Non-hyperaccumulators -- 2.3 Reactive Oxygen Species Generation Under Metal Stress -- 3 Mechanism of As and Cr Detoxification in Hyperaccumulator Plants -- 3.1 ROS Scavenging Mechanisms -- 3.1.1 Enzymatic Antioxidants -- 3.1.1.1 Superoxide Dismutase, EC 1.15.1.1 -- 3.1.1.2 Catalase, EC1.11.1.6 -- 3.1.1.3 Ascorbate Peroxidase, EC 1.11.1.1 -- 3.1.1.4 Glutathione Peroxidase, EC 1.11.1.9 -- 3.1.1.5 Glutathione Reductase, EC 1.6.4.2 -- 3.1.2 Non-enzymatic Antioxidants -- 3.1.2.1 Phenolic Compounds -- 3.1.2.2 Ascorbate and Glutathione -- 4 Importance of Detoxification Mechanisms for As and Cr Phytoremediation -- 5 Conclusions and Prospective -- References -- Phytochelatin and Oxidative Stress Under Heavy Metal Stress Tolerance in Plants -- 1 Introduction -- 2 Metal Toxicity in Plants -- 3 Phytochelatin Biosynthesis -- 3.1 Structure of PCs -- 3.2 PCs Biosynthesis -- 3.2.1 Pathway of PCs Biosynthesis -- 3.2.2 Regulation of PCs Biosynthesis -- 3.3 Factors Affecting PCs Biosynthesis -- 3.3.1 Types of Heavy Metals -- 3.3.2 Concentrations of Heavy Metals -- 3.3.3 Species and Growing Condition of Plant -- 4 Function of PCs -- 4.1 Improve Resistance of Plants to Heavy Metals and Detoxify the Toxicity of Heavy Metals -- 4.2 Maintain Intracellular Metal Ions Homeostasis -- 4.3 Other Functions -- 5 Role of PCs in Metal Detoxification and Tolerance -- 6 Molecular Biology of PCs -- 7 Conclusive Remarks -- References -- General Roles of Phytochelatins and Other Peptides in Plant Defense Mechanisms Against Oxidative Stress/Primary and Secondary ... -- 1 Introduction -- 2 Input and Impact of HMs -- 2.1 Route into Plant Cells from Environment -- 2.2 Toxicity to Plant Cells -- 2.3 ROS Production -- 3 Mechanisms Against Heavy Metal Toxicity. , 3.1 Overview of Phytochelatin-Binding Defense Mechanism -- 3.1.1 Phytochelatins -- 3.1.2 Variation in Phytochelatins: Homo- and Iso-phytochelatins -- 3.1.3 Glutathione and Homo-glutathione -- 3.2 Other Mechanisms -- 3.2.1 Transport -- 3.2.2 Redox Enzymes -- 3.2.3 Sulfur Assimilation -- 3.2.4 Other Mechanisms: Hypothetical View -- 4 Conclusion and Future Prospective -- References -- Role of Polyphenols as Antioxidants in Native Species from Argentina Under Drought and Salinization -- 1 Introduction -- 2 ROS Production and Oxidative Damage in Plants -- 3 Polyphenol Accumulation Under Stress Conditions -- 4 The Importance of Polyphenols as Antioxidants -- 5 Oxidative Stress and Phenolic Compounds in Native Species from Argentina -- 5.1 Xerophytic Species from the Patagonian Monte -- 5.2 Prosopis strombulifera, a Native Halophyte -- 5.2.1 Synthesis of Polyphenols: An Expensive Cost to Survive -- 6 P. strombulifera and Larrea divaricata: Natural Sources of Antioxidants and Biomolecules -- 7 Conclusions and Perspectives -- References -- Reactive Oxygen Species and Plant Disease Resistance -- 1 Introduction -- 1.1 Early Research on the Role of ROS in Plant Disease Resistance -- 1.2 The Two Main Lines of Plant Defense to Pathogens and the Oxidative (ROS) Burst -- 1.3 Expression of ROS-Related Genes and Their Functions in Plant Disease Resistance -- 2 Pathogen Limitation in Plant Cells: The Contribution of ROS -- 2.1 Plant Cell Walls and Their ROS-Mediated Reinforcement: An Initial Barrier to Pathogen Ingress -- 2.2 Plant Stomatal Immunity: A Barrier to Pathogen Ingress Through Natural Openings is Mediated by ROS -- 2.3 Pathogen Limitation by ROS at the Plasma Membrane: A Possible Role of NADPH Oxidases -- 2.4 Subcellular Localization of Intracellular ROS and Pathogen Limitation -- 2.4.1 Mitochondria -- 2.4.2 Chloroplasts -- 2.4.3 Peroxisomes. , 3 Temporal ROS Accumulation and the Efficiency of Pathogen Limitation in Plant Tissues: Timing is Everything? -- 3.1 ROS Accumulation may Result in Disease Resistance and Plant Cell/Tissue Death During the Hypersensitive Response -- 3.2 ROS as Antimicrobial Agents in Plants -- 3.3 Timing is Everything: Early ROS Accumulation Seems to Confer Efficient, Symptomless Disease Resistance in Plants -- 4 ROS-Mediated Signaling During Plant Disease Resistance: Regulating Abiotic Stress and Pathogen Levels in Concert -- 4.1 The Dual, Concentration-Dependent Role of ROS in Plant Disease Resistance -- 4.2 ROS Waves in Plant Disease Resistance: An Integration of Signaling Pathways -- 5 Conclusions -- References -- Modulation of the Ascorbate-Glutathione Cycle Antioxidant Capacity by Posttranslational Modifications Mediated by Nitric Oxide... -- 1 Introduction -- 2 S-Nitrosylation and Tyrosine Nitration Under Stress Conditions -- 3 Glutathione Reductase (GR) is Unaffected by NO in Pea Plants -- 4 Monodehydroascorbate Reductase (MDAR) is Inactivated by NO-Related PTMs -- 5 Effect of NO-Related PTMs on Dehydroascorbate Reductase (DHAR) -- 6 Dual Regulation of Ascorbate Peroxidase (APX): Inactivated by Nitration and Enhanced by S-Nitrosylation -- 6.1 APX Is Inactivated by Nitration of Tyr235 -- 6.2 APX Is Enhanced by S-Nitrosylation of Cys32 -- 7 Conclusions -- References -- ROS-RNS-Phytohormones Network in Root Response Strategy -- 1 Roots as the Administrative Center of Plant Response to Environmental Signals -- 2 Reactive Oxygen Species in Root Responses -- 3 Reactive Nitrogen Species Contribution in Root Responses -- 4 Conclusions -- References -- Relationship Between Changes in Contents of Nitric Oxide and Amino Acids Particularly Proline in Plants Under Abiotic Stress -- 1 Introduction. , 2 Nitric Oxide Generation and Proline Accumulation are Concurrent Biochemical Changes.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Plants -- Effect of stress on. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (310 pages)
    Ausgabe: 1st ed.
    ISBN: 9783319067100
    DDC: 571.2
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- Contributors -- Part I Nitric Oxide: Metabolism, Identificationand Detection -- 1 An Update to the Understanding of Nitric Oxide Metabolism in Plants -- Abstract -- 1.1…Introduction -- 1.1.1 Brief Review of the Chemistry of Nitrogen-Active Species -- 1.2…Sources of NO in Plants: An Overview -- 1.2.1 Is Chloroplast a Source of NO? -- 1.2.2 NO Sources Under Abiotic Stress -- 1.3…Concluding Remarks -- Acknowledgments -- References -- 2 Biosynthesis of Nitric Oxide in Plants -- Abstract -- 2.1…Introduction -- 2.2…Mechanisms of Reductive NO Synthesis -- 2.2.1 Reductive NO Synthesis by Nitrate Reductase -- 2.2.2 Reductive NO Synthesis by the Mitochondrial Electron Transport Chain -- 2.2.3 Reductive NO Generation by Heme Containing Proteins -- 2.3…Mechanisms of Oxidative NO Synthesis -- 2.3.1 Oxidative NO Synthesis from l-Arginine -- 2.3.2 The Enigmatic Plant-Type NOS -- 2.3.3 Other Forms of Oxidative NO Synthesis -- 2.4…Nonenzymatic NO Release -- 2.5…Control of NO Synthesis in the Plant Cell -- 2.5.1 Control of Reductive and Oxidative NO Synthesis -- 2.5.2 Hormonal Control of NO Synthesis -- 2.6…Summary and Open Debates -- Acknowledgment -- 3 Function of Peroxisomes as a Cellular Source of Nitric Oxide and Other Reactive Nitrogen Species -- Abstract -- 3.1…Introduction -- 3.2…Functions of NO in Plants -- 3.3…Generation of NO in Plants and Subcellular Sites of Production -- 3.4…Presence of NOS Activity in Peroxisomes -- 3.5…Detection of NO Generation in Peroxisomes -- 3.5.1 Effect of Senescence -- 3.5.2 Effect of Metal Stress -- 3.6…Demonstration of in vivo NO Production in Peroxisomes -- 3.7…S-Nitrosylation and Nitration of Proteins in Peroxisomes -- 3.8…Conclusions -- Acknowledgments -- References -- 4 Role of Plant Mitochondria in Nitric Oxide Homeostasis During Oxygen Deficiency -- Abstract -- 4.1…Introduction. , 4.2…Signaling Functions of NO During O2 Deficiency: Plant Mitochondria As Important NO Targets -- 4.3…Mechanisms of NO Synthesis During O2 Deficiency: The Increasing Importance of Mitochondrial Nitrite Reduction -- 4.4…Mechanisms of NO Degradation During O2 Deficiency: The Involvement of Respiratory Proteins and Non-symbiotic Hemoglobins -- 4.5…Nitrogen Nutrition and Plant Tolerance to O2 Deficiency -- 4.6…Conclusion -- Acknowledgment -- References -- 5 Production of Nitric Oxide by Marine Unicellular Red Tide Phytoplankton, Chattonella marina -- Abstract -- 5.1…Introduction -- 5.2…Synthesis of NO in C. marina Cell Suspension -- 5.2.1 Chemiluminescence (CL) Reaction -- 5.2.2 Nitrite Determination -- 5.2.3 Fluorescent Probe Detection -- 5.3…Involvement of NO Synthase (NOS) and Nitrate Reductase (NR) in NO Production by C. marina -- 5.4…Conclusion -- References -- 6 Identification of Nitrosylated Proteins (SNO) and Applications in Plants -- Abstract -- 6.1…Introduction -- 6.2…Biotin-Switch and Relatives -- 6.2.1 SNOSID (S--NO Site Identification) -- 6.2.2 His-Tag Switch -- 6.2.3 DyLight Fluor DIGE, S-FLOS/SNO-DIGE, AMCA Switch and ''Fluorescent Switch'' -- 6.2.4 BS-ICAT and SNOCAP -- 6.2.5 SNO-RAC -- 6.2.6 BS on Protein Microarrays -- 6.2.7 SHIPS -- 6.2.8 Biotin/Cys-TMT Switch and SILAC-BS -- 6.3…Methods Using a Direct SNO Reduction -- 6.3.1 Phenylmercury Reduction -- 6.3.2 Phosphine Switch -- 6.3.3 SNO Reduction by Gold Nanoparticules -- 6.3.4 Complementary Approaches to Identify Nitrosothiols -- 6.4…Assessment of Protein Nitrosylation in Plants -- Acknowledgments -- References -- 7 Nitric Oxide: Detection Methods and Possible Roles During Jasmonate-Regulated Stress Response -- Abstract -- 7.1…Introduction -- 7.2…Biological Activities of Nitric Oxide -- 7.3…Methods of NO Detection. , 7.3.1 Detection of NO and NO Measurement in Cell Culture and in Planta -- 7.3.2 Methods of Detection of Nitrosylated Proteins -- 7.3.3 NO Donors and NO Scavengers -- 7.3.4 Reporter Genes -- 7.4…Potentiation of Nitric Oxide and Jasmonates Signaling in Abiotic Stress Responses -- 7.4.1 NO Regulation of JA Signaling, Epigenetics, and Role of microRNAs -- 7.4.2 Roots in the Sensing of Drought and Salt Stresses: A Role of Nitric Oxide and Jasmonates -- 7.5…Conclusion -- References -- 8 S-Nitrosoglutathione Reductase: Key Regulator of Plant Development and Stress Response -- Abstract -- 8.1…Introduction -- 8.2…Reactive Nitrogen Species -- 8.3…GSNO Reductase Controls GSNO Turnover -- 8.4…GSNO Reductase in Animals -- 8.5…GSNO Reductase in Plants -- 8.6…Functions of GSNO Reductase During Plant Development -- 8.7…GSNO Reductase during Stress Response -- 8.7.1 Biotic Stress -- 8.7.2 Abiotic Stress -- 8.8…Conclusions -- Acknowledgments -- References -- 9 Nitro-Fatty Acids: Synthesis, Properties, and Role in Biological System -- Abstract -- 9.1…Introduction -- 9.2…Fatty Acid Nitration -- 9.3…Electrophilic and Therapeutical Properties of NO2-FA -- 9.4…Formation of NO2-FA in Extra Virgin Olive Oil -- 9.5…Potential Pitfalls -- Acknowledgements -- References -- Part II Nitric Oxide: Properties, Modeof Action and Functional Rolein Stress Physiology -- 10 Nitric Oxide and Reactive Nitrogen Species -- Abstract -- 10.1…Introduction -- 10.2…Properties of Nitric Oxide -- 10.3…Chemical Properties of Nitroxyl and Its Donors -- 10.3.1 Biological Reactivity of HNO -- 10.4…Chemical Properties and Donors of Nitrosonium -- 10.4.1 Biological Activity of NO+ -- 10.5…Peroxynitrite -- 10.6…Biotargets of Reactive Nitrogen Species -- 10.6.1 Tyrosine Nitration -- 10.6.2 Nitration of Unsaturated Fatty Acids -- 10.6.3 Protein S-Nitrosylation -- 10.6.4 Metal Nitrosylation. , 10.7…Conclusion -- Acknowledgments -- References -- 11 Nitric Oxide and Other Signaling Molecules: A Cross Talk in Response to Abiotic Stress -- Abstract -- 11.1…Introduction -- 11.2…NO Signal Transduction -- 11.3…NO Interaction with Other Signaling Molecules in Response to Abiotic Stress -- 11.3.1 Interaction of NO with Ca2+ -- 11.3.2 Interaction of NO with H2O2 and ABA -- 11.3.3 Interactions of NO with MAPK, cGMP, and Ethylene -- 11.4…Conclusions and Perspectives -- Acknowledgements -- References -- 12 Cytoprotective Role of Nitric Oxide Under Oxidative Stress -- Abstract -- 12.1…Introduction -- 12.2…The Generation of Reactive Oxygen Species -- 12.3…Physiological Consequences of Oxidative Stress in Plants -- 12.4…NO and Oxidative Stress -- 12.5…Conclusion -- References -- 13 Phytohormones and Nitric Oxide Interactions During Abiotic Stress Responses -- Abstract -- 13.1…Introduction -- 13.2…Phytohormones and Nitric Oxide Interactions Under Abiotic Stress -- 13.2.1 Temperature Stress -- 13.2.2 Drought Stress -- 13.2.3 Salt Stress -- 13.2.4 Heavy Metal Stress -- 13.3…Concluding Remarks -- References -- 14 Tolerance of Plants to Abiotic Stress: A Role of Nitric Oxide and Calcium -- Abstract -- 14.1…Introduction -- 14.2…Cross Talk Between NO and Calcium -- 14.2.1 Stress-Induced Ca2+ Mobilization by NO -- 14.2.2 Mechanism of NO-induced Changes in [Ca2+]cyt -- 14.3…The Ca2+ Signature -- 14.4…Ca2+ Sensing and Signaling -- 14.4.1 Calcium-Binding Proteins (CaBPs) -- 14.4.1.1 Ca2+ Sensor Relays -- 14.4.1.2 Ca2+ Sensor Responders -- 14.4.2 Other Ca2+-Binding Proteins -- 14.5…Elevated Levels of [Ca2+]cyt and NO Synthesis -- 14.6…Ca2+ Homeostasis -- 14.7…Conclusion -- References -- 15 Abiotic Stress Tolerance in Plants: Exploring the Role of Nitric Oxide and Humic Substances -- Abstract -- 15.1…Introduction -- 15.2…Humic Substances. , 15.2.1 Types of Humic Substances -- 15.3…Beneficial Effects of HS on Plant Growth and Mineral Nutrition -- 15.3.1 Indirect Effects of HS -- 15.3.2 Direct Effects of HS -- 15.4…Factors Affecting Action of HS on Plant Growth -- 15.4.1 Extrinsic Factors and HS Action -- 15.4.2 Intrinsic Factors and HS Action -- 15.5…Interactive Role of NO, Other Phytohormones and HS in Plant Root- and Shoot-Growth, and Mineral Nutrition -- 15.5.1 Interactive Role of NO, Other Phytohormones and HS in Plant Root -- 15.5.2 Interactive Role of NO, Other Phytohormones and HS in Plant Shoot -- 15.6…Concluding Remarks and Future Perspectives -- References -- 16 Nitric Oxide in Relation to Plant Signaling and Defense Responses -- Abstract -- 16.1…Introduction -- 16.2…Induction of Nitric Oxide Signaling Pathway by Chitosan -- 16.3…Nitric Oxide Signaling and Defense Responses -- 16.4…Crosstalk Between Abiotic and Biotic Stress Responses -- 16.5…Conclusions and Future Prospects -- Acknowledgment -- References -- 17 The Role of Nitric Oxide in Programmed Cell Death in Higher Plants -- Abstract -- 17.1…Introduction -- 17.2…Evolution of NO and Dual Function During Plant Programmed Cell Death -- 17.3…Effects of NO on Developmental PCD -- 17.4…Role of NO in Hypersensitive Response -- 17.5…Involvement of NO in Abiotic Stress-Induced PCD -- 17.6…Regulation of NO on PCD--Associated Genes Expression -- 17.7…Interaction Between NO and Other Signaling Molecules During Plant PCD -- 17.8…NO Signaling Network in Response to PCD -- 17.9…Control of NO Level in Plant Mitochondrion -- 17.10…Conclusion and Perspectives -- Acknowledgments -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Plants -- Effect of stress on. ; Nitrogen oxides. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (252 pages)
    Ausgabe: 1st ed.
    ISBN: 9783319178042
    DDC: 571.2
    Sprache: Englisch
    Anmerkung: Intro -- Foreword -- Preface -- Contents -- Part I Nitric Oxide: Properties and Functional Role -- 1 Reactive Nitrogen Species and Nitric Oxide -- Abstract -- 1.1 Introduction -- 1.2 Nitric Oxide -- 1.2.1 Properties of Nitric Oxide -- 1.2.2 Various Roles of NO in Plant Physiology -- 1.3 Peroxynitrite -- 1.3.1 Properties of Peroxynitrite -- 1.3.2 Reactions of ONOO− with Proteins -- 1.3.3 Reactions of ONOO− with Amino Acids -- 1.3.4 Reactions of ONOO− with Lipids -- 1.3.5 Reactions of ONOO− with DNA -- 1.4 Nitrosothiols -- 1.5 Conclusion -- References -- 2 Functional Role of Nitric Oxide Under Abiotic Stress Conditions -- Abstract -- 2.1 Introduction -- 2.2 Nitric Oxide and Abiotic Stress -- 2.2.1 Heavy Metal Toxicity -- 2.2.2 Drought Stress -- 2.2.3 Salinity -- 2.2.4 Heat Stress -- 2.2.5 Cold Stress -- 2.2.6 Ozone -- 2.2.7 UV-B Radiation -- 2.2.8 Flooding -- 2.2.9 Wounding -- 2.3 Conclusion -- References -- 3 Nitric Oxide and Abiotic Stress-Induced Oxidative Stress -- Abstract -- 3.1 Introduction -- 3.1.1 Oxidative Stress and Reactive Oxygen Species -- 3.1.2 Site of ROS Production -- 3.2 Nitric Oxide and Oxidative Stress -- 3.3 Salinity and Nitric Oxide -- 3.4 Drought and Nitric Oxide -- 3.5 Low Temperature and Nitric Oxide -- 3.6 High Temperature and Nitric Oxide -- 3.7 UV-B Radiation and Nitric Oxide -- 3.8 Heavy Metal Stress and Nitric Oxide -- 3.9 Conclusions and Future Projections -- References -- 4 Regulatory Role of Nitric Oxide in Alterations of Morphological Features of Plants Under Abiotic Stress -- Abstract -- 4.1 Introduction -- 4.2 Root and Stem Growth -- 4.3 Germination and Survival -- 4.4 Specialized Morphological Features -- 4.5 Morphological Response of Cotyledons Under Abiotic Stress -- 4.6 Conclusion -- References -- Part II Nitric Oxide and Plant Adaptation to Abiotic Stresses. , 5 Nitric Oxide and High Temperature Stress: A Physiological Perspective -- Abstract -- 5.1 Introduction -- 5.2 Effect of High Temperature Stress on Plants -- 5.2.1 Germination -- 5.2.2 Morphology -- 5.2.3 Flowering -- 5.2.4 Photosynthesis -- 5.3 Source of NO in Plants -- 5.4 Heat Stress and NO Synthesis in Plants -- 5.5 NO and Thermotolerance -- 5.6 NO Signaling: Heat Perception and Mechanism of Thermotolerance -- 5.7 Conclusion -- References -- 6 Nitric Oxide in Drought Stress Signalling and Tolerance in Plants -- Abstract -- 6.1 Introduction -- 6.2 Mechanisms of Adaptation to Drought -- 6.3 Regulation of Genes Under Drought -- 6.4 Nitric Oxide Generation in Plants -- 6.5 Nitric Oxide Signalling in Plants -- 6.6 Effect of Nitric Oxide in Plant Hormone-Mediated Signalling -- 6.7 Crosstalk Between Polyamines and NO -- 6.8 Oxidative Stress Alleviation by Nitric Oxide -- 6.9 NO Mediation of ABA-Induced Stomatal Closure -- 6.10 Promotion of Adventitious Root Growth -- 6.11 Conclusion and Future Prospects -- References -- 7 Nitric Oxide and Plant Hemoglobins Improve the Tolerance of Plants to Hypoxia -- Abstract -- 7.1 Introduction -- 7.2 Plant Hemoglobins: Categories and Function -- 7.3 Properties of Nonsymbiotic Hemoglobins -- 7.3.1 Expression of nsHb-1 -- 7.4 Effect of Hypoxic Stress on Metabolism -- 7.5 Nitric Oxide -- 7.5.1 Production of NO Under Hypoxic Stress -- 7.6 Interaction of Nitric Oxide with nsHb-1s -- 7.7 Concluding Remarks and Future Directions -- References -- 8 Nitric Oxide as a Mediator of Cold Stress Response: A Transcriptional Point of View -- Abstract -- 8.1 Introduction -- 8.2 NO Bioavailability During Plant Response to Low Temperature: More than a Way to Skin a Cat? -- 8.3 NO and Plant Tolerance to Low Temperature -- 8.3.1 Identification of Cold-Responsive NO-Dependent Genes: From Specific to Holistic. , 8.4 How NO Regulates Cold-Responsive Gene Expression? The Missing Links -- 8.5 Concluding Remarks -- References -- 9 Nitric Oxide and UV-B Radiation -- Abstract -- 9.1 Introduction -- 9.2 NO Reveals Protective Effects Under UV-B Influence in Dose-Dependent Manner -- 9.3 The Role of NO-dependent Regulatory Cascades in UV-B Perception by Plant Cell -- 9.4 Conclusions and Future Perspectives -- References -- 10 Nitric Oxide Impact on Plant Adaptation to Transition Metal Stress -- Abstract -- 10.1 Introduction -- 10.2 Transition Metals in Plants: An Exquisite Balance -- 10.3 Mechanism of Transition Metal Toxicity -- 10.4 Nitric Oxide in Transition Metal Stress -- 10.5 Transition Metal Stress Alters the Endogenous Level of Nitric Oxide -- 10.6 Exogenous Application of Nitric Oxide Alters the Transition Metal Tolerance Responses -- 10.7 Conclusions -- References -- 11 Nitric Oxide Action in the Improvement of Plant Tolerance to Nutritional Stress -- Abstract -- 11.1 Introduction -- 11.2 Modulation of K+Na+ Homeostasis by NO Under Salinity Stress -- 11.3 The Interplay of NO with Calcium Under Abiotic Stress Conditions -- 11.4 Role of NO in Plant Iron Homeostasis Under Nutritional Stress -- 11.5 The Interplay of NO with Mineral Nutrients Under Heavy Metal Stress -- 11.6 Conclusion -- References -- 12 Role of Nitric Oxide in Heavy Metal Stress -- Abstract -- 12.1 Introduction -- 12.2 NO Generation Under HMs Stress -- 12.3 Effects of NO in the Protection Against HMs Stress -- 12.4 Conclusions and Future Prospects -- References -- 13 Role of Nitric Oxide in Salt Stress-induced Programmed Cell Death and Defense Mechanisms -- Abstract -- 13.1 Introduction -- 13.2 NaCl Tolerance in Plants -- 13.3 NaCl Toxicity and Salt-induced Cell Death in Plants -- 13.4 NO Production in Plants Exposed to NaCl -- 13.5 NO in Signal Transduction -- 13.6 NO and Salt Tolerance. , 13.7 NO- and Salt-induced Programmed Cell Death -- 13.8 Conclusion and Perspectives -- References -- 14 Nitric Oxide and Postharvest Stress of Fruits, Vegetables and Ornamentals -- Abstract -- 14.1 Introduction -- 14.2 Relationship Between Endogenous Nitric Oxide and Ethylene -- 14.3 Postharvest Application of NO -- 14.3.1 Fumigation with NO Gas -- 14.3.2 Dipping in Aqueous Solution of NO-Donor Compounds -- 14.4 Effects of NO on Intact Produce -- 14.4.1 Effects of NO Gas -- 14.4.2 Effects of NO-Donor Compounds -- 14.5 Effects of NO on Fresh-Cut Produce -- 14.6 Effects of NO on Ornamentals -- 14.7 Mode of Action of NO on Postharvest Produce -- 14.8 Commercial Usage -- References -- 15 Insights into the Participation of Nitric Oxide and Extra Cellular ATP in Wounding -- Abstract -- 15.1 Introduction -- 15.2 Wounding-Mediated Downstream Events and NO -- 15.3 Extracellular ATP (eATP) and NO Are Co-players in Plant and Animal Systems -- 15.4 Participation of S-Nitrosylation in Wounding -- 15.5 Concluding Remarks -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Plant cellular signal transduction. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (275 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030111298
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- References -- Contents -- About the Editors -- Hydrogen Peroxide and Nitric Oxide Generation in Plant Cells: Overview and Queries -- 1 Introduction -- 2 Generation and Scavenging of H2O2 in Plant Cells -- 3 Generation of NO in Plant Cells -- 4 Interplay Among Cell Organelles by NO and H2O2 Signaling: Overview and Queries -- 5 Conclusions -- References -- Hydrogen Peroxide and Nitric Oxide Signaling Network -- 1 Introduction -- 2 NO Signaling Network in Plants -- 2.1 NO Synthesis -- 2.2 Response to NO in Plants -- 2.2.1 Seed Germination -- 2.2.2 Root Growth and Development -- 2.2.3 Ripening and Senescence -- 2.2.4 Stomatal Closure -- 2.2.5 Pollen Tube Growth -- 2.2.6 Disease Resistance -- 2.2.7 Abiotic Stress -- 2.3 NO Signaling Transduction with Other Signaling Molecules -- 3 H2O2 Signaling Network in Plants -- 3.1 H2O2 Generation -- 3.2 Responses to H2O2 in Plants -- 3.2.1 Growth and Development -- 3.2.2 Stress Response -- 4 Crosstalk Between NO and H2O2 Signaling in Plants -- 4.1 Interaction in Growth and Development -- 4.2 Interaction in Stress Responses -- 4.2.1 Drought -- 4.2.2 Salt -- 4.2.3 UV-B -- 4.2.4 Cold -- 4.2.5 Heat -- 4.2.6 Heavy Metal -- 5 Conclusion -- References -- Hydrogen Peroxide (H2O2)- and Nitric Oxide (NO)-Derived Posttranslational Modifications -- 1 Introduction -- 2 H2O2-Derived Posttranslational Modifications -- 2.1 Carbonylation -- 2.2 Sulfhydryl Oxidations -- 3 NO-Derived Posttranslational Modifications -- 3.1 Tyrosine Nitration -- 3.2 S-nitrosylation -- 3.3 Nitroalkylation -- 4 Interplay Between H2O2- and NO-Derived Posttranslational Modifications -- 5 Conclusions and Future Perspectives -- References -- Transcriptional Regulation of Gene Expression Related to Hydrogen Peroxide (H2O2) and Nitric Oxide (NO) -- 1 Introduction. , 2 Nitric Oxide Induces a High Transcriptional Reprogramming Under Physiological and Stress Conditions -- 2.1 Nitric Oxide-Responsive Genes Identified by cDNA-Amplification Fragment Length Polymorphism (cDNA-AFLP) and Microarray Ana... -- 2.2 Nitric Oxide-Induced Transcriptional Regulation Determined by RNA-seq Analysis -- 3 Transcriptional Regulation Mediated by Hydrogen Peroxide -- 4 Interplay Between Hydrogen Peroxide and Nitric Oxide Signaling Events -- 5 Conclusions and Future Perspectives -- References -- Metabolism and Interplay of Reactive Oxygen and Nitrogen Species in Plant Mitochondria -- 1 Introduction -- 2 Redox Level and Production of ROS and RNS in Mitochondria -- 3 Regulation of ROS and RNS Production and Scavenging at the Level of Electron Transport from NADH/NADPH and Succinate to Ubiq... -- 3.1 Complexes I and II -- 3.2 Alternative NADH/NADPH Dehydrogenases -- 4 Regulation of ROS and RNS Production and Scavenging at the Electron Transport Level from Ubiquinol to the Terminal Electron ... -- 4.1 Alternative Oxidase in the Regulation of ROS and RNS Levels in Plants -- 4.2 Cytochrome Pathway in ROS/RNS Production and Scavenging -- 5 Conclusions -- References -- Hydrogen Peroxide and Nitric Oxide Metabolism in Chloroplasts -- 1 Introduction -- 2 ROS Metabolism -- 2.1 ROS Generation in Plants -- 2.2 ROS Scavenging -- 2.2.1 ASC-GSH Cycle and SOD -- 2.2.2 Thioredoxins -- 2.2.3 Peroxiredoxins and Sulfiredoxins -- 3 NO Metabolism -- 3.1 NO Synthesis in Plants -- 3.2 Sources of NO in Plants -- 3.3 NO Generation in Chloroplasts -- 3.4 NO Targets in Chloroplasts -- 4 ROS/RNS and Stress -- 5 ROS-/RNS-Mediated Protein Modifications -- 5.1 Sulfenylation -- 5.2 S-Nitrosylation and Tyr Nitration -- 6 ROS/RNS Cross Talk -- 7 Future Perspectives -- References. , Participation of Hydrogen Peroxide and Nitric Oxide in Improvement of Seed Germination Performance Under Unfavourable Conditio... -- 1 Introduction -- 2 Cold Stratification -- 3 Abiotic Stress-Related Suppression of Seed Germination -- 3.1 Chilling Stress -- 3.2 Salinity and Heavy Metal Stress -- 3.3 Seed Storage Conditions -- 4 The Scientific Basis for Improving Seed Germination by Exogenous Nitric Oxide -- 5 Conclusion -- References -- Nitric Oxide and Hydrogen Peroxide in Root Organogenesis -- 1 Root System Architecture and Patterning -- 2 Primary Root Growth -- 3 Root Branching -- 4 Root Hair Development -- 5 Shoot-to-Root Long-Distance Signaling -- 6 Hormone Cross Talk -- 7 Conclusions -- References -- Nitric Oxide and Hydrogen Peroxide: Signals in Fruit Ripening -- 1 Introduction -- 2 Exogenous Applications of Ethylene Has Differential Responses in Climacteric and Non-climacteric Fruits -- 3 ROS-Hormone Interaction in Fruit Ripening -- 4 NO Levels During Fruit Development and Ripening: Where Does NO Come from? -- 5 From Chloroplasts to Chromoplasts: The Role of NO and H2O2 in Fruit Color Change -- 6 NO and H2O2 in Fruit Postharvest: New Insights -- 7 Conclusions -- References -- Plant Abiotic Stress: Function of Nitric Oxide and Hydrogen Peroxide -- 1 Introduction -- 2 Abiotic Stress in Plants -- 3 Plasma Membrane H+-ATPase -- 4 Function of H2O2 in Abiotic Stress in Plants -- 5 Function of NO in Abiotic Stress in Plants -- 6 Conclusion -- References -- Nitric Oxide and Hydrogen Peroxide in Plant Response to Biotic Stress -- 1 Introduction -- 2 Enrolment of NO and H2O2 in Plant Stress Response -- 2.1 Sources, Signaling and Interaction -- 2.2 Regulation of Gene Expression -- 3 Conclusion -- References -- Biotechnological Application of Nitric Oxide and Hydrogen Peroxide in Plants -- 1 Initial Considerations. , 2 Pharmacological Manipulation of H2O2 and NO Levels in Plant Tissues -- 2.1 Methods for the Delivery of H2O2 and NO to Plant Tissues -- 2.2 Impacts of Exogenous H2O2 and NO on the Shelf Life of Fruit and Vegetables -- 2.3 Impacts of Exogenous H2O2 and NO on Plant Development and Stress Resistance -- 3 Genetic Manipulation of H2O2 and NO Metabolism -- 3.1 Genetic Manipulation of H2O2 Metabolism -- 3.2 Genetic Manipulation of NO Metabolism -- 4 Concluding Remarks -- References.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Oxidative stress. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (306 pages)
    Ausgabe: 1st ed.
    ISBN: 9783319750880
    DDC: 616.07
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Generation and Scavenging of Reactive Oxygen Species (ROS) in Plant Cells: an Overview -- Interaction Between the Metabolism of ROS and Reactive Nitrogen Species (RNS) -- References -- Contents -- About the Editors -- 1 Plant Superoxide Dismutases: Function Under Abiotic Stress Conditions -- Abstract -- 1 Introduction -- 2 Physiological Importance of SOD in Plants -- 3 Plant Environmental or Abiotic Stress -- 4 Effect of Abiotic Stress on SOD -- 4.1 Heavy Metal Stress -- 4.2 Salinity and Drought Stress -- 4.3 Stress by Xenobiotics -- 4.4 Temperature Stress -- 4.5 High Light Intensity Stress -- 4.6 Ozone and Atmospheric Contaminants -- 4.7 Mechanical Stress -- 5 Transgenic Plants Overexpressing SOD to Produce Stress-Tolerant Plants -- 6 Post-translational Modifications of Plant SODs Mediated by Nitric Oxide -- 7 Conclusions -- Acknowledgements -- References -- 2 Studies of Catalase in Plants Under Abiotic Stress -- Abstract -- 1 Introduction -- 2 Peroxisomes and Abiotic Stress Response -- 3 Response to Multiple Abiotic Stress Conditions -- 4 Exogenous Application of Abiotic Stress-Relief Agents -- 5 Nitric Oxide and Catalase Activity -- 6 Differential Control of Different Catalase Genes -- 7 Response of Transgenic Plants -- 8 Insight from Downregulating Catalase Gene Expression -- 9 Conclusion -- References -- 3 Ascorbate Peroxidase Functions in Higher Plants: The Control of the Balance Between Oxidative Damage and Signaling -- Abstract -- 1 Introduction -- 2 Distribution and Subcellular Localization of APXs and APX-Like Proteins in Plants -- 2.1 Functional APX Isoforms -- 2.2 APX-Like Proteins -- 3 Regulation of APX Isoforms -- 3.1 Expression of APX Isoforms in Arabidopsis -- 3.2 Regulation of cAPX at Transcriptional and Post-translational Levels -- 3.3 Production of sAPX and tAPX from Single Gene Via Alternative Splicing. , 3.4 Inhibition of Chloroplastic APXs Under Oxidative Stress -- 4 Physiological Roles of APXs as Antioxidant Defense Enzymes and Signaling Regulators -- 4.1 Chloroplastic Isoforms Play a Role in the Water-Water Cycle -- 4.2 Chloroplastic Isoforms as H2O2 Signaling Regulators -- 4.3 Cytosolic APXs Play a Central Role in the Cellular Redox Regulation -- 4.4 Unexploited Peroxisomal and Mitochondrial APXs -- 5 Conclusion and Future Perspectives -- Acknowledgements -- References -- 4 Glutathione Reductase: Safeguarding Plant Cells Against Oxidative Damage -- Abstract -- 1 Initial Considerations -- 2 Enzyme Structure and Catalytic Mechanism -- 2.1 Structural Features of GR Enzyme -- 2.2 Catalytic Mechanism of GR Enzyme -- 3 Significance of GR Activity During Plant Development -- 4 Significance of GR Activity During Plant Stress Responses -- 4.1 Drought Stress -- 4.2 Salt Stress -- 4.3 Temperature Stress -- 4.4 Heavy Metals -- 4.5 Light Stress -- 4.6 Regulation of GR Under Stress -- 5 Genetic Manipulation of GR -- 5.1 Physiological Consequences -- 5.2 Biotechnological Applications -- 6 Concluding Remarks -- Acknowledgements -- References -- 5 Function of the Various MDAR Isoforms in Higher Plants -- Abstract -- 1 Introduction -- 2 MDAR Isoforms -- 2.1 Genes -- 2.2 Localization -- 2.3 Structure of the MDAR Enzyme -- 3 Regulation -- 3.1 Transcriptional Regulation -- 3.2 Post-transcriptional and Post-translational Regulation -- 4 Functions of the Different MDAR Isoforms -- 4.1 Role in Stress Tolerance -- 4.2 Role in Plant Development -- 5 Conclusion -- References -- 6 Peroxiredoxins: Types, Characteristics and Functions in Higher Plants -- Abstract -- 1 Introduction -- 2 Common Characteristics of Peroxiredoxins -- 3 Types of Peroxiredoxins -- 4 AhpC/prx1-Type Peroxiredoxins -- 4.1 The Plant Prx1-Peroxiredoxins -- 5 Prx6-Type Peroxiredoxins. , 5.1 The Plant Prx6-Type Peroxiredoxins -- 6 Prx5-Type Peroxiredoxins -- 6.1 The Plant Prx5-Type Peroxiredoxins -- 7 Bcp-Type Peroxiredoxins -- 7.1 The Plant Bcp-Type Peroxiredoxins -- 8 Conclusions -- Acknowledgements -- References -- 7 Redox Protein Thioredoxins: Function Under Salinity, Drought and Extreme Temperature Conditions -- Abstract -- 1 Effect of Salt, Drought and Extreme Temperatures Stresses -- 2 ROS and RNS Generation -- 3 Control of ROS/RNS Under Stress -- 4 Thioredoxins in Higher Plants -- 5 Functional Biochemistry of Trxs Mediated by ROS and RNS -- 6 Role of Trx Under Salinity -- 7 Role of Trx Under Drought -- 8 Role of Trx Under Extreme Temperatures -- 9 Concluding Remarks -- Acknowledgements -- References -- 8 Biosynthesis and Regulation of Ascorbic Acid in Plants -- Abstract -- 1 Introduction -- 2 Biosynthesis of Ascorbic Acid -- 2.1 d-Mannose/l-Galactose Pathway -- 2.1.1 Phosphomannose Isomerase (PMI) -- 2.1.2 Phosphomannose Mutase (PMM) -- 2.1.3 GDP-d-Mannose Pyrophosphorylase (GMP) -- 2.1.4 GDP-d-Mannose-3′,5′-Epimerase (GME) -- 2.1.5 GDP-l-Galactose Phosphorylase (GGP) -- 2.1.6 l-Galactose-1-Phosphate Phosphatase (GPP) -- 2.1.7 l-Galactose Dehydrogenase (l-GalDH) -- 2.1.8 l-Galactono-1,4-Lactone Dehydrogenase (l-GalLDH) -- 2.2 Alternative Ascorbate Biosynthesis Pathways -- 2.2.1 Pathway via d-Glucuronic Acid -- 2.2.2 Pathway via l-Gulose -- 2.2.3 Pathway via d-Galacturonic Acid -- 3 Regulation of Ascorbic Acid Biosynthesis -- 4 Conclusions -- Acknowledgements -- References -- 9 Glutathione Metabolism and Its Function in Higher Plants Adapting to Stress -- Abstract -- 1 Introduction -- 2 Glutathione Biosynthesis -- 3 Glutathione Distribution and Transport -- 4 Glutathione Turnover and Degradation -- 5 Signal Transduction Related to Glutathione -- 5.1 Protein S-Glutathionylation -- 5.2 S-Nitrosoglutathione (GSNO). , 6 Function of Glutathione Metabolism in Plant Tolerance to Abiotic Stress -- 6.1 Salinity and Drought Stresses -- 6.2 High and Low Temperature -- 6.3 Heavy Metals -- 7 Function of Glutathione Metabolism in Plant Resistance to Biotic Stress -- 7.1 GSH as an Antioxidant Protects the Plant Cell in Biotic Stress -- 7.2 Function of GSH in Nuclei -- 7.3 Function of GSH in Chloroplasts -- 7.4 Function of GSH in Apoplast -- 7.5 GSH Participates in Material Synthesis as Precursors -- 7.6 GSH as Transmitting Signals Takes Part in Plant Disease-Resistance -- 8 Concluding Remarks -- Acknowledgements -- References -- 10 Revisiting Carotenoids and Their Role in Plant Stress Responses: From Biosynthesis to Plant Signaling Mechanisms During Stress -- Abstract -- 1 Introduction -- 2 The Building Blocks of Carotenoids and Biosynthesis -- 2.1 Main Genes, Enzymes and Events During Carotenogenesis -- 3 Role of Carotenoids in Plant Stress: Water Deficit and Excess -- 4 Role of Carotenoids in Plant Stress: Nutritional or Chemical -- 5 Role of Carotenoids in Plant Stress: Temperature and Light -- 6 Role of Carotenoids in Plant Stress: Salt Stress -- 7 Role of Carotenoids in Plant Stress: Elevated Greenhouse Gases -- 8 Role of Carotenoids in Plant Stress: Plant Competition and Allelopathy -- 9 Signaling Mechanisms of Carotenoids During Plant Stress -- 9.1 Signaling and Bio-communication -- 10 Future Perspectives and Concluding Remarks -- References -- 11 Abiotic Stress Response in Plants: The Relevance of Tocopherols -- Abstract -- 1 Introduction -- 2 Expression of Tocopherol Synthesis Genes Under Abiotic Stresses -- 3 Tocopherol Status in Plant Cells Under Abiotic Stresses -- 4 Mitigation of Abiotic Stress with Tocopherol Pretreatment -- 5 Conclusion -- References -- 12 Flavonoids (Antioxidants Systems) in Higher Plants and Their Response to Stresses -- Abstract. , 1 Introduction -- 2 Biosynthesis of Flavonoids -- 3 Regulation of Flavonoids -- 4 Flavonoids and Stress Responses -- 4.1 UV and Light Stress -- 4.2 Water and Salt Stress -- 4.3 Ozone -- 4.4 Nitrogen Deficiency and Cold -- 4.5 Heavy Metals and Other Stress Stimuli -- 5 Flavonoids in the Biotic Stress Response -- 6 Concluding Perspectives -- Acknowledgements -- References -- 13 Class III Peroxidases: Functions, Localization and Redox Regulation of Isoenzymes -- Abstract -- 1 Introduction -- 2 Reaction Mechanisms and Structure of POX Isoenzymes -- 2.1 Three Cycles of POXs -- 2.2 Structural Characterisation of POX Isoenzymes -- 3 Substrates -- 4 Antioxidative Function -- 4.1 Redox Regulation of Peroxidatic Cycle and Subcellular Compartmentation -- 5 Pro-oxidative Functions -- 5.1 H2O2-Producing System (Oxidative Cycle) -- 5.2 Hydroxyl Radical-Generating System (Hydroxylic Cycle) -- 6 Effects of Environmental Stresses on POXs -- 7 Genetic Manipulation of POX Isoenzymes Related to Plant Defence Against Environmental Stress Conditions -- 8 Conclusion -- Acknowledgements -- References.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Plants-Effect of hydrogen sulfide on. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (241 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030736781
    Serie: Plant in Challenging Environments Series ; v.1
    DDC: 581.7
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- Chapter 1: Hydrogen Sulfide on the Crossroad of Regulation, Protection, Interaction and Signaling in Plant Systems Under Different Environmental Conditions -- 1.1 Introduction -- 1.2 Biosynthesis and Role of H2S in Plant System -- 1.3 H2S and Regulation of Physiological Processes in Plants -- 1.4 H2S and Protection of Plants Under Stress -- 1.5 H2S Signaling and Interaction in Plants -- 1.6 Conclusion -- References -- Chapter 2: Hydrogen Sulfide: A Road Ahead for Abiotic Stress Tolerance in Plants -- 2.1 Introduction -- 2.2 Biosynthesis of H2S in Plants -- 2.3 Physiological Functions of H2S in Plants -- 2.4 Effect of H2S on Plants Under Salt Stress -- 2.5 Response of Plants to H2S Under Drought Stress -- 2.6 Effect of H2S Under Heavy Metal Stress -- 2.7 Effect of H2S Under Temperature Stress -- 2.7.1 Low Temperature Stress -- 2.7.2 High Temperature Stress -- 2.8 Conclusion -- References -- Chapter 3: Functional Interaction of Hydrogen Sulfide with Nitric Oxide, Calcium, and Reactive Oxygen Species Under Abiotic Stress in Plants -- 3.1 Introduction -- 3.2 Biosynthesis of H2S in Plants -- 3.3 Changes in Endogenous Level of H2S in Plants in Response to Stresses -- 3.3.1 Low Temperature Stress and H2S -- 3.3.2 High Temperature Stress and H2S -- 3.3.3 Dehydration Stress and H2S -- 3.3.4 Salt Stress and H2S -- 3.3.5 Heavy Metals (HMs) and H2S -- 3.4 Functional Interactions of H2S with Ca2+ Ions -- 3.5 Crosstalk of H2S with ROS -- 3.6 H2S and NO as Interdependent Signal Mediators -- 3.7 Functional Interaction of H2S with Other Signal Mediators During Adaptive Reactions in Plants -- 3.8 Conclusions -- References -- Chapter 4: Hydrogen Sulfide and Redox Homeostasis for Alleviation of Heavy Metal Stress -- 4.1 Introduction -- 4.2 Metabolism of H2S in Plants -- 4.3 Role of H2S in Alleviating Heavy Metal Stress. , 4.3.1 Abrogation of Al Toxicity in Plants by H2S Application -- 4.3.2 Abrogation of Cd Toxicity in Plants by H2S Application -- 4.3.3 Mitigation of As Toxicity in Plants by H2S Application -- 4.3.4 Mitigation of Cr Toxicity in Plants by H2S Application -- 4.3.5 Mitigation of Cu Toxicity in Plants by H2S Application -- 4.3.6 Mitigation of Other Heavy Metal Toxicity in Plants by H2S Application -- 4.4 Conclusion and Future Perspectives -- References -- Chapter 5: Effect of Hydrogen Sulfide on Osmotic Adjustment of Plants Under Different Abiotic Stresses -- 5.1 Introduction -- 5.2 Metabolism of H2S in Plants -- 5.3 Roles of H2S in Different Forms of Abiotic Stresses -- 5.3.1 Drought Stress -- 5.3.2 Salt Stress -- 5.3.3 Temperature Stress -- 5.3.4 Heavy Metal Stress -- 5.3.5 Other Forms of Stress -- 5.4 Conclusion and Future Perspectives -- References -- Chapter 6: Hydrogen Sulfide and Stomatal Movement -- 6.1 Introduction -- 6.2 Hydrogen Sulfide and Abscisic Acid in Plants Under Drought and Salinity -- 6.3 Hydrogen Sulfide and Light -- 6.3.1 Blue Light -- 6.3.2 Red Light -- 6.3.3 UV-B -- 6.4 Stomatal Conductance and CO2 -- 6.5 Stomatal Conductance and Plant Growth Under Ozone Exposure -- 6.6 Conclusion and Perspectives -- References -- Chapter 7: Hydrogen Sulfide and Fruit Ripening -- 7.1 Introduction -- 7.2 How H2S Is Endogenously Generated in Plant Cells? -- 7.3 Endogenous H2S Metabolism during Fruit Ripening and Potential Beneficial Effects of the Exogenous H2S Application During Postharvest -- 7.4 Conclusion and Future Perspectives -- References -- Chapter 8: Hydrogen Sulfide Impact on Seed Biology Under Abiotic Stress -- 8.1 Introduction -- 8.2 Hydrogen Sulfide Metabolism in Seeds -- 8.3 Hydrogen Sulfide and Germination Capacity -- 8.4 Molecular Mechanisms Controlled by H2S in Germinating Seeds. , 8.4.1 Interplay with ROS, Nitric Oxide, and Antioxidant Defense -- 8.4.2 H2S and Seed Metabolism -- 8.4.3 H2S and Hormone Signaling in the Regulation of Seed Germination -- 8.5 Concluding Remarks and Open Questions -- References -- Chapter 9: Hydrogen Sulfide Signaling in the Defense Response of Plants to Abiotic Stresses -- 9.1 Introduction -- 9.2 Stress by Metals -- 9.3 Salt Stress -- 9.4 Water Stress -- 9.5 Temperature Stress -- 9.6 Interplay Among H2S, Plant Hormones, and Secondary Messengers -- 9.7 Conclusions -- References -- Chapter 10: A Transcriptomic and Proteomic View of Hydrogen Sulfide Signaling in Plant Abiotic Stress -- 10.1 Introduction -- 10.2 Participation of H2S, Polysulfides, and Reactive Sulfur Species in Stress Signaling -- 10.3 The H2S Signaling Network Seen Through Transcriptomics and Proteomics -- 10.3.1 H2S and the Plant-Stress Proteome -- 10.3.2 H2S and the Plant-Stress Transcriptome -- 10.4 Conclusion -- References -- Chapter 11: Cysteine and Hydrogen Sulfide: A Complementary Association for Plant Acclimation to Abiotic Stress -- 11.1 Introduction -- 11.2 Homeostasis of Cys and H2S -- 11.2.1 Regulation of Cys Homeostasis -- 11.2.2 Regulation of H2S Homeostasis -- 11.3 Involvement of H2S and Cys in Plant Adaptive Responses to Abiotic Stresses -- 11.4 Mode of Action of H2S and Cys Under Abiotic Stresses -- 11.4.1 Mode of Action of H2S in Abiotic Stress Tolerance of Plants -- 11.4.1.1 Interaction of H2S with Other Signaling Molecules -- 11.4.1.2 H2S and Persulfidation -- 11.4.2 Mode of Action of Cys in Abiotic Stress Tolerance of Plants -- 11.4.2.1 Cys and Glutathione in the Cellular Redox Homeostasis -- 11.4.2.2 Cys and Phytochelatins -- 11.4.2.3 Cys and Metallothioneins -- 11.5 Conclusions -- References -- Chapter 12: Hydrogen Sulfide and Posttranslational Modification of Proteins: A Defense Strategy Against Abiotic Stress. , 12.1 Introduction -- 12.2 Protein Persulfidation and Detection Methods in Plants -- 12.3 Protein Persulfidation and H2S in Plants -- 12.4 Protein Persulfidation in Plant Adaptive Responses to Abiotic Stress -- 12.4.1 Antioxidant Defense System -- 12.4.2 Autophagy -- 12.4.3 Stomatal Closure -- 12.5 The Crosstalk of H2S with Other Signaling Molecules and Protein Persulfidation -- 12.5.1 Crosstalk of H2S and NO in Relation to Persulfidation -- 12.5.2 Crosstalk of H2S and ROS in Relation to Persulfidation -- 12.6 Conclusions and Future Perspectives -- References -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Plant hormones. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (317 pages)
    Ausgabe: 1st ed.
    ISBN: 9783030774776
    Serie: Plant in Challenging Environments Series ; v.2
    DDC: 571.742
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- Contents -- Chapter 1: Plant Hormones and Plant Defense Response Against Pathogens -- 1.1 Perception and Signal Transduction: The Apoplastic Crosstalk -- 1.2 Cell Signaling: Perception of Danger Signal -- 1.2.1 Effectors and Receptors -- 1.2.2 Signal Transduction Pathways -- 1.3 Nitric Oxide, Hydrogen Peroxide and Melatonin as Mediators for Defense Responses -- 1.4 Phytohormones in Pathogen Resistance: Roles and Network -- 1.4.1 Salicylic Acid (SA) -- 1.4.2 Jasmonates (JA), Ethylene (ET) and Polyamines -- 1.4.3 Cytokinins (CK) -- 1.4.4 Auxin -- 1.4.5 Brassinosteroids (BRs) -- 1.4.6 Gibberellins (GAs) -- 1.5 Genome Editing Tools: CRISPR/Cas Technology as New Approach to Improve Crop Resistance -- 1.6 Conclusion -- References -- Chapter 2: Plant Hormones and Nutrient Deficiency Responses -- 2.1 Introduction -- 2.2 Experimental Techniques Used to Study the Role of Hormones in the Regulation of Nutrient Deficiency Responses -- 2.2.1 Hormone Measurements -- 2.2.2 Exogenous Application of Hormones, their Precursors and Inhibitors -- 2.2.3 Use of Mutants Altered in the Regulation of Responses -- 2.2.4 Use of Hormone Mutants -- 2.2.5 Split-Root Experiments -- 2.2.6 Use of Reciprocally Grafted Plants Between WT and Mutants or Transgenic Lines Altered in the Regulation of Responses -- 2.2.7 Use of Detopped Plants, Girdled Plants or Foliar Application of Nutrients and Other Compounds -- 2.2.8 Molecular Techniques (Transcriptomic, Proteomic, Metabolomic, Y2H, BiFC, …) -- 2.3 Nutrient Deficiency Responses -- 2.3.1 General Adaptive Responses -- 2.3.1.1 Shoot-Root Growth Alterations/TOR/SnRKs -- 2.3.1.2 Recycling/Authophagy -- 2.3.1.3 Substitution -- 2.3.2 Specific Responses -- 2.3.2.1 Physiological Responses -- 2.3.2.2 Morphological Responses -- 2.4 Sensors and Transceptors. , 2.5 Role of Hormones in the Regulation of Nutrient Deficiency Responses -- 2.5.1 Role of Hormones on General Adaptive Responses -- 2.5.1.1 Role of Hormones on Shoot-Root Growth Alterations/TOR/SnRKs -- 2.5.1.2 Role of Hormones on Recycling/Authophagy -- 2.5.2 Role of Hormones on Specific Responses -- 2.5.2.1 Role of Hormones on Physiological Responses -- 2.5.2.2 Role of Hormones on Morphological Responses -- 2.6 Crosstalk Between Different Hormones, and Between Hormones and Other Signaling Substances -- 2.7 Concluding Remarks and Future Perspectives -- References -- Chapter 3: Seed Germination: Explicit Crosstalk Between Hormones and ROS -- 3.1 Introduction -- 3.2 Seed Germination: First Sign of Perceptible Growth and Hormonal Interplay -- 3.3 ROS, an Inevitable Player - Signaling and/or Direct Action in Growth -- 3.4 Cross-Talk Between Hormone and ROS During Seed Germination -- 3.5 ROS - PM H+-ATPase - Hormones: Extension of the Signaling Network -- 3.6 Reactive Nitrogen Species (RNS): Another Potential Candidate to Play for Signaling -- 3.7 Conclusion -- References -- Chapter 4: Hormones and Light-Regulated Seedling Development -- 4.1 Light-Regulated Responses During Seedling Development -- 4.2 Light Perception and Signaling in Plants -- 4.2.1 Perception of Light Signals -- 4.2.1.1 Perception of Red and Far-Red Lights -- 4.2.1.2 Perception of Blue Light -- 4.2.1.3 Perception of UV-B Light -- 4.2.2 Transcriptional Hubs Regulating Light-Mediated Changes in Gene Expression -- 4.3 Hormonal Regulation of Dark-Adapted Seedling Growth Beneath the Soil -- 4.4 Hormones Mediate Light-Induced Opening and Expansion of Cotyledons -- 4.5 Regulation of Chlorophyll and Anthocyanin Accumulation by Hormones -- 4.6 Hormones Control Hypocotyl Growth Under Light -- 4.7 Hormonal Regulation of Phototropism and Shade Avoidance Response -- 4.8 Conclusion -- References. , Chapter 5: Light-Mediated Regulation of Plant Hormone Metabolism -- 5.1 Initial Considerations -- 5.2 A Brief Update on Light Signaling in Higher Plants -- 5.3 Mechanistic Links Between Light Perception and Hormone Metabolism in Higher Plants: A Wide Spectrum of Possibilities -- 5.3.1 Light and Auxin Metabolism -- 5.3.2 Light and Gibberellin Metabolism -- 5.3.3 Light and Abscisic Acid Metabolism -- 5.3.4 Light and Cytokinin Metabolism -- 5.3.5 Light and Ethylene Metabolism -- 5.3.6 Light and Brassinosteroid Metabolism -- 5.4 Concluding Remarks -- References -- Chapter 6: Hormones in Photoperiodic Flower Induction -- 6.1 Introduction -- 6.2 Photoperiodic Induction of Flowering -- 6.3 The Effect of Hormones on the Induction of Flowering of Plants with Different Photoperiodic Requirements -- 6.4 Effect of Photoperiod on Hormone Metabolism and Signal Transduction Pathways During Generative Induction -- 6.5 Mechanisms of Hormone Action During Photoperiodic Induction of Flowering -- 6.6 Interactions of Hormones in the Regulation of Flowering Induction in Ipomoea nil -- 6.7 Summary -- References -- Chapter 7: Recent Insights into Auxin-Mediated Molecular Cross Talk Events Associated with Regulation of Root Growth and Architecture During Abiotic Stress in Plants -- 7.1 Introduction -- 7.2 Regulation of Root Architecture -- 7.3 Auxin Efflux Carriers Coordinate Auxin Distribution in Roots During Abiotic Stress -- 7.4 Abiotic-Stress Induced Regulation of Auxin Homoeostasis in Roots -- 7.5 NO and JA Precisely Regulate Root Development by Acting Through Auxin-Mediated Signaling Pathway -- 7.6 ABA and Ethylene Crosstalk Integrates Auxin Signalling in Plant Roots During Osmotic Stress -- 7.7 Hydrogen Sulphide and Indoleamine-Mediated Auxin Signalling in Roots -- 7.8 Concluding Remarks and Future Perspectives -- References. , Chapter 8: Abscisic Acid and Fruit Ripening: Its Role in Grapevine Acclimation to the Environment, a Case of Study -- 8.1 ABA Biochemistry -- 8.2 ABA Physiology -- 8.3 Relevance of ABA in the Physiology of Fruit Ripening -- 8.4 ABA and Grapevine -- 8.5 Conclusions Regarding Grapevines and ABA -- References -- Chapter 9: Biosynthesis and Molecular Mechanism of Brassinosteroids Action -- 9.1 Introduction -- 9.2 Chemical Structure of Brassinosteroids -- 9.3 Metabolism of Brassinosteroids -- 9.4 Brassinosteroids Biosynthesis Pathways -- 9.4.1 Early Steps of Brassinosteroids Biosynthesis -- 9.4.2 Biosynthesis of C27-Brassinosteroids -- 9.4.3 Biosynthesis of C28-Brassinosteroids -- 9.4.4 Biosynthesis of C29-Brassinosteroids -- 9.4.5 Inhibitors of Brassinosteroid Biosynthesis -- 9.5 Signal Transduction of Brassinosteroids -- 9.5.1 Structure of BRI1/BAK1 Receptors -- 9.5.2 Brassinosteroids' Crosstalk with Other Phytohormones -- 9.6 Conclusions and Future Perspectives -- References -- Chapter 10: Regulatory Role of Melatonin in the Redox Network of Plants and Plant Hormone Relationship in Stress -- 10.1 Introduction -- 10.2 Metabolism of ROS and RNS -- 10.3 Melatonin and ROS/RNS -- 10.4 Melatonin in the ROS/RNS Network in Plants -- 10.5 Melatonin and Gene Regulation in the Redox Network -- 10.6 Melatonin and Plant Hormone Relationship -- 10.6.1 Auxin -- 10.6.2 Gibberellin, Abscisic Acid and Cytokinins -- 10.6.3 Ethylene -- 10.6.4 Salicylic Acid and Jasmonic Acid -- 10.6.5 Brassinosteroids, Polyamines and Strigolactones -- 10.7 Conclusions -- References -- Chapter 11: Tryptophan: A Precursor of Signaling Molecules in Higher Plants -- 11.1 Introduction -- 11.2 Tryptophan Is Generated in the Shikimate (Chorismate) Pathway -- 11.2.1 Auxin, Indole-3-Acetic Acid (IAA) -- 11.2.2 Serotonin (5-Hydroxytryptamine, 5-HT) -- 11.2.3 Melatonin (N-Acetyl-5-Methoxytryptamine). , 11.2.3.1 Abiotic Stress -- 11.2.3.2 Fruit Ripening and Postharvest -- 11.3 Conclusions and Future Perspectives -- References -- Chapter 12: GABA and Proline Metabolism in Response to Stress -- 12.1 Introduction -- 12.2 Biosynthesis and Degradation of GABA in Plants -- 12.3 Proline Metabolism in Plants -- 12.4 GABA and Proline Involvement in Abiotic Stresses Responses -- 12.5 GABA and Proline Responses in Plants Under Biotic Stresses -- 12.6 Potential Functions of GABA in Plant Response to Abiotic and Biotic Stress -- 12.7 Potential Functional Implications of Proline in Plants Under Stress -- 12.8 Potential Links Between GABA and Proline Metabolism and Hormone Signalling -- 12.9 Upcoming Challenges for the Understanding of Proline and GABA Contributions to Stress Tolerance in Plants -- References.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    Cham :Springer International Publishing AG,
    Schlagwort(e): Cytology. ; Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (387 pages)
    Ausgabe: 1st ed.
    ISBN: 9783319440811
    Sprache: Englisch
    Anmerkung: Intro -- Preface -- ReferencesCorpas FJ, Gupta DK, Palma JM (2015) Production sites of reactive oxygen species (ROS) in plants. In: Gupta DK, Palma JM, Corpas FJ (eds) Reactive oxygen species and oxidative damage in plants under stress. Springer Publication, Germany, p 1-22Gupta DK, Corpas FJ, Palma JM (2013) Heavy metal stress in plants. Springer-Verlag, GermanyGupta DK, Palma JM, Corpas FJ (2015) Reactive oxygen species and oxidative damage in plants under stress. Springer-Verlag, GermanyGupta DK, Peña LB, Romero -- Contents -- About the Editors -- 1 Cellular Redox Homeostasis as Central Modulator in Plant Stress Response -- Abstract -- 1.1 Introduction -- 1.2 ROS Production Pathways -- 1.3 ROS-Scavenging Mechanisms -- 1.3.1 Non-enzymatic Antioxidants and Ascorbate-Glutathione Cycle -- 1.3.2 ROS Removal Enzymes -- 1.4 Redox-Dependent Signalling -- 1.4.1 Redox Signalling in Different Cell Compartments -- 1.4.2 The Role of Redox-Sensitive Proteins in Signal Transduction -- 1.5 Conclusion and Perspectives -- References -- 2 Plant Cell Redox Homeostasis and Reactive Oxygen Species -- Abstract -- 2.1 The Concept of Redox Homeostasis in Plants -- 2.2 Production of Reactive Oxygen Species -- 2.2.1 Types of ROS -- 2.2.1.1 Singlet Oxygen -- 2.2.1.2 Superoxide Radical -- 2.2.1.3 Hydrogen Peroxide -- 2.2.1.4 Hydroxyl Radical -- 2.3 ROS Detoxification in Plants -- 2.3.1 Enzymatic Antioxidants -- 2.3.2 Non-enzymatic Antioxidants -- 2.4 Conclusion -- References -- 3 Redox Balance in Chloroplasts as a Modulator of Environmental Stress Responses: The Role of Ascorbate Peroxidase and Nudix Hydrolase in Arabidopsis -- Abstract -- 3.1 Introduction -- 3.2 Ascorbate-Dependent Redox System in Chloroplasts -- 3.2.1 Chloroplastic APX and its Contribution to Redox Modulation -- 3.2.2 Recycling of Ascorbate and Glutathione. , 3.3 Roles of Nudix Hydrolases in the Regulation of the Redox State in Chloroplasts -- 3.4 Conclusion -- Acknowledgments -- References -- 4 Physiological Processes Contributing to the Synthesis of Ascorbic Acid in Plants -- Abstract -- 4.1 Introduction -- 4.2 AA Synthesis in Plant Tissues -- 4.3 Environmental Regulation of AA Synthesis in Plant Tissues -- 4.3.1 The Light Control of AA Synthesis -- 4.4 Physiological Processes Affecting AA Synthesis -- 4.4.1 Feedback Regulation and Other Specific Regulators -- 4.4.1.1 Relationship of AA Synthesis with Plant Metabolism -- Interaction with Photosynthesis -- Interaction with Respiration -- Regulation of AA Synthesis by Plant Hormones -- 4.5 The Synthesis of AA in Fruits -- 4.5.1 The Effect of Light on the Synthesis of AA in Fruit -- 4.6 The Changes of AA During Plant Domestication -- 4.7 Concluding Remark -- Acknowledgments -- References -- 5 Redox State in Plant Mitochondria and its Role in Stress Tolerance -- Abstract -- 5.1 Introduction -- 5.2 NADP in the Mitochondrial Matrix -- 5.3 Isocitrate Dehydrogenase Substrate Cycle -- 5.4 Glycolytic Reactions Associated with Plant Mitochondria -- 5.5 Malate and Citrate Valves -- 5.6 Modulation of Redox State in Mitochondria by Thioredoxin -- 5.7 Ascorbate and Glutathione -- 5.8 Production of Reactive Oxygen Species by Plant Mitochondria -- 5.9 Generation of Nitric Oxide by Plant Mitochondria -- 5.10 Cross Talk Between NO and ROS -- 5.11 Mitochondrial ROS and NO Production in Stress Response -- 5.12 Conclusion -- References -- 6 Oxidative Stress and its Role in Peroxisome Homeostasis in Plants -- Abstract -- 6.1 Introduction -- 6.2 Reactive Oxygen Species in Plants -- 6.3 ROS Generation and Elimination in Plant Cells -- 6.3.1 ROS Generation in Peroxisomes -- 6.3.1.1 Photorespiration -- 6.3.1.2 β-Oxidation of Fatty Acids -- 6.3.1.3 Other Pathways. , 6.3.2 ROS Damage and the Scavenging Antioxidant System in Peroxisomes -- 6.3.2.1 The Destructive Effect of ROS -- 6.3.2.2 Peroxisomal ROS Scavenging System -- 6.4 Redox Regulation of Peroxisome Biogenesis -- 6.4.1 Peroxisome Biogenesis -- 6.4.2 The Import of Peroxisomal Matrix Proteins -- 6.4.3 Oxidative Stress Represses Peroxisome Biogenesis -- 6.4.3.1 Oxidative Stress Represses Peroxisomal Matrix Protein Import -- 6.4.3.2 Oxidative Stress Affects the Subcellular Localization and Activity of Peroxisomal Proteins -- 6.4.3.3 Oxidative Stress Affects Peroxisomal Proliferation -- 6.5 Redox State Regulates Peroxisome Degradation -- 6.5.1 Pexophagy is the Main Way to Degrade Oxidized Peroxisomes -- 6.5.2 Pexophagy Involved in Peroxisome Remodeling -- 6.6 Conclusion -- Acknowledgments -- References -- 7 Glutathione-Related Enzyme System: Glutathione Reductase (GR), Glutathione Transferases (GSTs) and Glutathione Peroxidases (GPXs) -- Abstract -- 7.1 Introduction -- 7.2 Glutathione -- 7.3 Glutathione Reductase Supports Continuous Reduction of the Oxidized Glutathione -- 7.4 GSTs are a Large and Even Broadening Family of Proteins Which Comprise Highly Heterogenic Enzymes with Diverse Structure and Function -- 7.5 Glutathione Peroxidase may be a Link Between Glutathione and Thioredoxin Systems -- 7.6 GSH-Related Enzymes and the Redox-Dependent Signaling -- 7.7 Concluding Remark -- Acknowledgments -- References -- 8 Glutathione Metabolism in Plants Under Metal and Metalloid Stress and its Impact on the Cellular Redox Homoeostasis -- Abstract -- 8.1 Soil Toxic Elements and the Particular Cases of Mercury and Arsenic -- 8.2 Oxidative Stress and Plant Tolerance to Toxic Metal(loid)s -- 8.3 Glutathione is a Key Component of the Antioxidant Response to Toxic Metal(loid)s -- 8.4 Toxic Element Binding to Biothiols is Essential for Plant Tolerance. , 8.5 Regulation of Glutathione Metabolism Under Metal(loid) Stress -- 8.5.1 Endogenous Factors that Modulate the Biothiol Metabolism -- 8.6 Metallomics to Characterize Biothiols Metabolism and Metal Speciation -- 8.7 Phytoremediation of Toxic Elements in Perspective -- 8.8 Concluding Remark -- Acknowledgments -- References -- 9 Glutathione and Related Enzymes in Response to Abiotic Stress -- Abstract -- 9.1 Introduction -- 9.2 The Role of GSH and Related Enzymes in Plant Response to Different Abiotic Stressors -- 9.2.1 Drought -- 9.2.2 Temperature -- 9.2.3 Salinity -- 9.2.4 Heavy Metals -- 9.2.5 Herbicides -- 9.3 Conclusion -- References -- 10 The Function of Cellular Redox Homeostasis and Reactive Oxygen Species (ROS) in Plants Tolerance to Abiotic Stresses -- Abstract -- 10.1 Introduction -- 10.2 Source of ROS and Redox Homeostasis in Plants -- 10.2.1 ROS Generation and Redox Homeostasis in Chloroplast -- 10.2.2 ROS Generation and Redox Homeostasis in Mitochondria -- 10.2.3 ROS Generation and Redox Homeostasis in Peroxisome -- 10.3 Cross Talk Between ROS and Signal Molecular in Regulating Plant Tolerance to Abiotic Stress -- 10.3.1 ROS and ABA -- 10.3.2 ROS and Nitric Oxide -- 10.3.3 ROS and Calcium -- 10.3.4 ROS and Other Signal Molecules -- 10.4 Summary and Perspective -- References -- 11 Abiotic Stress-Induced Redox Changes and Programmed Cell Death in Plants-A Path to Survival or Death? -- Abstract -- 11.1 Introduction -- 11.2 Role of ROS in Abiotic Stress-Induced PCD in Plants -- 11.3 High-Light-Induced PCD -- 11.4 Ultraviolet (UV)- and Ozone-Mediated PCD -- 11.5 PCD Induced by Heavy Metals -- 11.6 Temperature-Induced PCD -- 11.7 Salinity Stress-Associated PCD -- 11.8 Role and Interaction of Mitochondria and Plastids in PCD -- 11.9 Concluding Remark -- References. , 12 The Role of ROS and Redox Signaling During the Initial Cellular Response to Abiotic Stress -- Abstract -- 12.1 Introduction -- 12.2 ROS-Signaling During Light Acclimation and High-Light Stress -- 12.2.1 Sources of Chloroplastic ROS Production -- 12.2.2 ROS-Dependent Chloroplast-to-Nucleus Signaling Pathways -- 12.3 ROS-Mediated Signaling Events During Temperature Stress -- 12.3.1 ROS Burst During Temperature Stress -- 12.3.2 ROS-Mediated Signaling Cascades During Temperature Stress -- 12.4 ROS-Dependent Salt Stress Signaling Pathways -- 12.4.1 Primary ROS Sources upon Salt Stress -- 12.4.2 ROS-Dependent Initial Salt Stress Signaling Pathways -- 12.5 ROS-Mediated Low-Oxygen Sensing -- 12.5.1 Mitochondria and Plasma Membrane as ROS Sources During Hypoxia -- 12.5.2 ROS-Dependent Low-Oxygen Signaling Cascades -- 12.6 Conclusion -- Acknowledgments -- References -- 13 The Cadmium-Binding Thioredoxin O Acts as an Upstream Regulator of the Redox Plant Homeostasis -- Abstract -- 13.1 Introduction -- 13.2 Materials and Methods -- 13.2.1 Chemicals -- 13.2.2 Cloning, Expression, and Purification of Recombinant PsTrx o -- 13.2.3 Effect of Cd2+ ions on PsTrx o In Vitro -- 13.2.4 Electrochemical Measurements -- 13.2.5 Voltamperogram of Trx o: Determination of the Half-Wave Potential -- 13.2.6 Determination of Electron Mobility -- 13.2.7 Spectrum Screening -- 13.2.8 Statistical Analysis -- 13.3 Results and Discussion -- 13.3.1 In Vitro Effect of Cd2+ on Trx o Structure and Activity -- 13.3.2 Proposed Diagram for the Oxidation Mechanisms of Pea Trx o -- 13.3.3 In Vitro Effect of Cd2+ on Trx o Oxidation -- 13.3.4 Variation of the Redox Reaction of Trx o as a Function of Protein Concentration -- 13.3.5 Effect of Cd2+-Trx o Bound on the Redox Reaction -- 13.3.6 Effect of Cd2+ on the Half-Wave Potential E1/2 or Redox Potential of Trx o. , 13.3.7 Effect of Cd2+ on Electron Transfer.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...