GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Plant breeding. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (373 pages)
    Edition: 1st ed.
    ISBN: 9783319204215
    Language: English
    Note: Intro -- Preface -- References -- Contents -- Production Sites of Reactive Oxygen Species (ROS) in Organelles from Plant Cells -- 1 Introduction -- 2 Chloroplasts -- 2.1 Production of Reactive Oxygen Species -- 2.2 ROS Scavenging Systems -- 3 Mitochondria -- 3.1 Ascorbate Biosynthesis -- 4 Plasma Membrane -- 5 Peroxisomes -- 5.1 H2O2-Producing System -- 5.2 Superoxide-Generating System -- 5.3 Peroxisomal Antioxidant Systems -- 6 Conclusions -- References -- What Do the Plant Mitochondrial Antioxidant and Redox Systems Have to Say Under Salinity, Drought, and Extreme Temperature? -- 1 Introduction -- 2 Mitochondria as Central Organelles in Stress -- 3 Mitochondrial ROS and RNS Production -- 3.1 ROS Production -- 3.2 NO Production -- 4 Antioxidant and Redox Systems in Plant Mitochondria -- 4.1 AOX -- 4.2 Mn-SOD -- 4.3 ASC-GSH Cycle -- 4.4 Peroxiredoxin System -- 5 Mitochondrial Antioxidant and Redox System Are Involved in Abiotic Stress Response -- 5.1 Mitochondrial Response Under Salinity -- 5.2 Mitochondrial Response Under Drought -- 5.3 Mitochondrial Response Under Extreme Temperatures -- 6 Conclusions and Prospectives -- References -- ROS as Key Players of Abiotic Stress Responses in Plants -- 1 Introduction -- 2 ROS-Generating Pathways and Their Regulatory Mechanisms in Plants -- 3 Involvement of ROS in the Regulation of Systemic Acquired Acclimation to Abiotic Stress -- 4 Temporal Coordination Between ROS and Other Signals in the Regulation of Systemic Signaling in Plants -- 5 Spatial Coordination Between ROS and Other Signals in the Regulation of Systemic Signaling in Plants -- 6 Integration of ROS Signals with Other Signals -- 7 Involvement of ROS in the Regulation of Retrograde Signaling -- 8 Programmed Cell Death Regulated by ROS Under Abiotic Stress -- 9 Conclusions -- References. , Redox Regulation and Antioxidant Defence During Abiotic Stress: What Have We Learned from Arabidopsis and Its Relatives? -- 1 Introduction -- 2 What is ROS and How it is Produced in Plant Cell? -- 2.1 Chloroplasts -- 2.2 Mitochondria -- 2.3 Peroxisomes -- 2.4 Other Sources of ROS Production -- 3 Antioxidant Defence Mechanism -- 3.1 Superoxide Dismutase -- 3.2 Catalase -- 3.3 Ascorbate Peroxidase and Other Ascorbate-Glutathione Cycle Enzymes -- 3.4 Glutathione Peroxidase -- 3.5 Peroxiredoxins -- 3.6 Nonenzymatic Antioxidants -- 4 ROS Formation and Antioxidant Defence Under Abiotic Stress -- 4.1 Salt Stress -- 4.2 Drought -- 4.3 Temperature Stress -- 4.4 Heavy Metal Stress -- 5 Conclusions -- References -- ROS Signaling: Relevance with Site of Production and Metabolism of ROS -- 1 Introduction -- 2 ROS: Types and Chemistry -- 3 ROS: Sites of Production -- 4 Oxidative Metabolism and Antioxidant System -- 5 Role of ROS in Signaling -- 6 Signaling in Growth and Development -- 7 Systemic Signaling and Acclimation -- References -- Heavy Metal-Induced Oxidative Stress in Plants: Response of the Antioxidative System -- 1 Introduction -- 2 Antioxidative Enzymes -- 2.1 Superoxide Dismutase -- 2.2 Antioxidative Enzymes That Remove H2O2 -- 2.2.1 Catalase -- 2.2.2 Peroxidases -- 2.2.3 Ascorbate-Glutathione Cycle -- 3 Nonenzymatic Antioxidants -- 3.1 Phenolics -- 3.2 Ascorbic Acid -- 3.3 Tocopherols and Tocotrienols -- 3.4 Amino Acids and Peptide Derivates -- 3.5 Soluble Sugars -- 3.6 Thiols/Glutathione -- 3.7 Carotenoids and Phycobilins -- 4 Conclusion -- References -- Arsenic and Chromium-Induced Oxidative Stress in Metal Accumulator and Non-accumulator Plants and Detoxification Mechanisms -- 1 Introduction -- 1.1 Prevalence of Arsenic and Chromium Stress -- 2 Phytotoxic Effects of As and Cr Stress in Hyperaccumulator and Non-hyperaccumulator Plants. , 2.1 Alterations in Physiological and Biochemical Mechanisms of Stressed Plants -- 2.2 Non-hyperaccumulators -- 2.3 Reactive Oxygen Species Generation Under Metal Stress -- 3 Mechanism of As and Cr Detoxification in Hyperaccumulator Plants -- 3.1 ROS Scavenging Mechanisms -- 3.1.1 Enzymatic Antioxidants -- 3.1.1.1 Superoxide Dismutase, EC 1.15.1.1 -- 3.1.1.2 Catalase, EC1.11.1.6 -- 3.1.1.3 Ascorbate Peroxidase, EC 1.11.1.1 -- 3.1.1.4 Glutathione Peroxidase, EC 1.11.1.9 -- 3.1.1.5 Glutathione Reductase, EC 1.6.4.2 -- 3.1.2 Non-enzymatic Antioxidants -- 3.1.2.1 Phenolic Compounds -- 3.1.2.2 Ascorbate and Glutathione -- 4 Importance of Detoxification Mechanisms for As and Cr Phytoremediation -- 5 Conclusions and Prospective -- References -- Phytochelatin and Oxidative Stress Under Heavy Metal Stress Tolerance in Plants -- 1 Introduction -- 2 Metal Toxicity in Plants -- 3 Phytochelatin Biosynthesis -- 3.1 Structure of PCs -- 3.2 PCs Biosynthesis -- 3.2.1 Pathway of PCs Biosynthesis -- 3.2.2 Regulation of PCs Biosynthesis -- 3.3 Factors Affecting PCs Biosynthesis -- 3.3.1 Types of Heavy Metals -- 3.3.2 Concentrations of Heavy Metals -- 3.3.3 Species and Growing Condition of Plant -- 4 Function of PCs -- 4.1 Improve Resistance of Plants to Heavy Metals and Detoxify the Toxicity of Heavy Metals -- 4.2 Maintain Intracellular Metal Ions Homeostasis -- 4.3 Other Functions -- 5 Role of PCs in Metal Detoxification and Tolerance -- 6 Molecular Biology of PCs -- 7 Conclusive Remarks -- References -- General Roles of Phytochelatins and Other Peptides in Plant Defense Mechanisms Against Oxidative Stress/Primary and Secondary ... -- 1 Introduction -- 2 Input and Impact of HMs -- 2.1 Route into Plant Cells from Environment -- 2.2 Toxicity to Plant Cells -- 2.3 ROS Production -- 3 Mechanisms Against Heavy Metal Toxicity. , 3.1 Overview of Phytochelatin-Binding Defense Mechanism -- 3.1.1 Phytochelatins -- 3.1.2 Variation in Phytochelatins: Homo- and Iso-phytochelatins -- 3.1.3 Glutathione and Homo-glutathione -- 3.2 Other Mechanisms -- 3.2.1 Transport -- 3.2.2 Redox Enzymes -- 3.2.3 Sulfur Assimilation -- 3.2.4 Other Mechanisms: Hypothetical View -- 4 Conclusion and Future Prospective -- References -- Role of Polyphenols as Antioxidants in Native Species from Argentina Under Drought and Salinization -- 1 Introduction -- 2 ROS Production and Oxidative Damage in Plants -- 3 Polyphenol Accumulation Under Stress Conditions -- 4 The Importance of Polyphenols as Antioxidants -- 5 Oxidative Stress and Phenolic Compounds in Native Species from Argentina -- 5.1 Xerophytic Species from the Patagonian Monte -- 5.2 Prosopis strombulifera, a Native Halophyte -- 5.2.1 Synthesis of Polyphenols: An Expensive Cost to Survive -- 6 P. strombulifera and Larrea divaricata: Natural Sources of Antioxidants and Biomolecules -- 7 Conclusions and Perspectives -- References -- Reactive Oxygen Species and Plant Disease Resistance -- 1 Introduction -- 1.1 Early Research on the Role of ROS in Plant Disease Resistance -- 1.2 The Two Main Lines of Plant Defense to Pathogens and the Oxidative (ROS) Burst -- 1.3 Expression of ROS-Related Genes and Their Functions in Plant Disease Resistance -- 2 Pathogen Limitation in Plant Cells: The Contribution of ROS -- 2.1 Plant Cell Walls and Their ROS-Mediated Reinforcement: An Initial Barrier to Pathogen Ingress -- 2.2 Plant Stomatal Immunity: A Barrier to Pathogen Ingress Through Natural Openings is Mediated by ROS -- 2.3 Pathogen Limitation by ROS at the Plasma Membrane: A Possible Role of NADPH Oxidases -- 2.4 Subcellular Localization of Intracellular ROS and Pathogen Limitation -- 2.4.1 Mitochondria -- 2.4.2 Chloroplasts -- 2.4.3 Peroxisomes. , 3 Temporal ROS Accumulation and the Efficiency of Pathogen Limitation in Plant Tissues: Timing is Everything? -- 3.1 ROS Accumulation may Result in Disease Resistance and Plant Cell/Tissue Death During the Hypersensitive Response -- 3.2 ROS as Antimicrobial Agents in Plants -- 3.3 Timing is Everything: Early ROS Accumulation Seems to Confer Efficient, Symptomless Disease Resistance in Plants -- 4 ROS-Mediated Signaling During Plant Disease Resistance: Regulating Abiotic Stress and Pathogen Levels in Concert -- 4.1 The Dual, Concentration-Dependent Role of ROS in Plant Disease Resistance -- 4.2 ROS Waves in Plant Disease Resistance: An Integration of Signaling Pathways -- 5 Conclusions -- References -- Modulation of the Ascorbate-Glutathione Cycle Antioxidant Capacity by Posttranslational Modifications Mediated by Nitric Oxide... -- 1 Introduction -- 2 S-Nitrosylation and Tyrosine Nitration Under Stress Conditions -- 3 Glutathione Reductase (GR) is Unaffected by NO in Pea Plants -- 4 Monodehydroascorbate Reductase (MDAR) is Inactivated by NO-Related PTMs -- 5 Effect of NO-Related PTMs on Dehydroascorbate Reductase (DHAR) -- 6 Dual Regulation of Ascorbate Peroxidase (APX): Inactivated by Nitration and Enhanced by S-Nitrosylation -- 6.1 APX Is Inactivated by Nitration of Tyr235 -- 6.2 APX Is Enhanced by S-Nitrosylation of Cys32 -- 7 Conclusions -- References -- ROS-RNS-Phytohormones Network in Root Response Strategy -- 1 Roots as the Administrative Center of Plant Response to Environmental Signals -- 2 Reactive Oxygen Species in Root Responses -- 3 Reactive Nitrogen Species Contribution in Root Responses -- 4 Conclusions -- References -- Relationship Between Changes in Contents of Nitric Oxide and Amino Acids Particularly Proline in Plants Under Abiotic Stress -- 1 Introduction. , 2 Nitric Oxide Generation and Proline Accumulation are Concurrent Biochemical Changes.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...