GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Oxidative stress. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (306 pages)
    Edition: 1st ed.
    ISBN: 9783319750880
    DDC: 616.07
    Language: English
    Note: Intro -- Preface -- Generation and Scavenging of Reactive Oxygen Species (ROS) in Plant Cells: an Overview -- Interaction Between the Metabolism of ROS and Reactive Nitrogen Species (RNS) -- References -- Contents -- About the Editors -- 1 Plant Superoxide Dismutases: Function Under Abiotic Stress Conditions -- Abstract -- 1 Introduction -- 2 Physiological Importance of SOD in Plants -- 3 Plant Environmental or Abiotic Stress -- 4 Effect of Abiotic Stress on SOD -- 4.1 Heavy Metal Stress -- 4.2 Salinity and Drought Stress -- 4.3 Stress by Xenobiotics -- 4.4 Temperature Stress -- 4.5 High Light Intensity Stress -- 4.6 Ozone and Atmospheric Contaminants -- 4.7 Mechanical Stress -- 5 Transgenic Plants Overexpressing SOD to Produce Stress-Tolerant Plants -- 6 Post-translational Modifications of Plant SODs Mediated by Nitric Oxide -- 7 Conclusions -- Acknowledgements -- References -- 2 Studies of Catalase in Plants Under Abiotic Stress -- Abstract -- 1 Introduction -- 2 Peroxisomes and Abiotic Stress Response -- 3 Response to Multiple Abiotic Stress Conditions -- 4 Exogenous Application of Abiotic Stress-Relief Agents -- 5 Nitric Oxide and Catalase Activity -- 6 Differential Control of Different Catalase Genes -- 7 Response of Transgenic Plants -- 8 Insight from Downregulating Catalase Gene Expression -- 9 Conclusion -- References -- 3 Ascorbate Peroxidase Functions in Higher Plants: The Control of the Balance Between Oxidative Damage and Signaling -- Abstract -- 1 Introduction -- 2 Distribution and Subcellular Localization of APXs and APX-Like Proteins in Plants -- 2.1 Functional APX Isoforms -- 2.2 APX-Like Proteins -- 3 Regulation of APX Isoforms -- 3.1 Expression of APX Isoforms in Arabidopsis -- 3.2 Regulation of cAPX at Transcriptional and Post-translational Levels -- 3.3 Production of sAPX and tAPX from Single Gene Via Alternative Splicing. , 3.4 Inhibition of Chloroplastic APXs Under Oxidative Stress -- 4 Physiological Roles of APXs as Antioxidant Defense Enzymes and Signaling Regulators -- 4.1 Chloroplastic Isoforms Play a Role in the Water-Water Cycle -- 4.2 Chloroplastic Isoforms as H2O2 Signaling Regulators -- 4.3 Cytosolic APXs Play a Central Role in the Cellular Redox Regulation -- 4.4 Unexploited Peroxisomal and Mitochondrial APXs -- 5 Conclusion and Future Perspectives -- Acknowledgements -- References -- 4 Glutathione Reductase: Safeguarding Plant Cells Against Oxidative Damage -- Abstract -- 1 Initial Considerations -- 2 Enzyme Structure and Catalytic Mechanism -- 2.1 Structural Features of GR Enzyme -- 2.2 Catalytic Mechanism of GR Enzyme -- 3 Significance of GR Activity During Plant Development -- 4 Significance of GR Activity During Plant Stress Responses -- 4.1 Drought Stress -- 4.2 Salt Stress -- 4.3 Temperature Stress -- 4.4 Heavy Metals -- 4.5 Light Stress -- 4.6 Regulation of GR Under Stress -- 5 Genetic Manipulation of GR -- 5.1 Physiological Consequences -- 5.2 Biotechnological Applications -- 6 Concluding Remarks -- Acknowledgements -- References -- 5 Function of the Various MDAR Isoforms in Higher Plants -- Abstract -- 1 Introduction -- 2 MDAR Isoforms -- 2.1 Genes -- 2.2 Localization -- 2.3 Structure of the MDAR Enzyme -- 3 Regulation -- 3.1 Transcriptional Regulation -- 3.2 Post-transcriptional and Post-translational Regulation -- 4 Functions of the Different MDAR Isoforms -- 4.1 Role in Stress Tolerance -- 4.2 Role in Plant Development -- 5 Conclusion -- References -- 6 Peroxiredoxins: Types, Characteristics and Functions in Higher Plants -- Abstract -- 1 Introduction -- 2 Common Characteristics of Peroxiredoxins -- 3 Types of Peroxiredoxins -- 4 AhpC/prx1-Type Peroxiredoxins -- 4.1 The Plant Prx1-Peroxiredoxins -- 5 Prx6-Type Peroxiredoxins. , 5.1 The Plant Prx6-Type Peroxiredoxins -- 6 Prx5-Type Peroxiredoxins -- 6.1 The Plant Prx5-Type Peroxiredoxins -- 7 Bcp-Type Peroxiredoxins -- 7.1 The Plant Bcp-Type Peroxiredoxins -- 8 Conclusions -- Acknowledgements -- References -- 7 Redox Protein Thioredoxins: Function Under Salinity, Drought and Extreme Temperature Conditions -- Abstract -- 1 Effect of Salt, Drought and Extreme Temperatures Stresses -- 2 ROS and RNS Generation -- 3 Control of ROS/RNS Under Stress -- 4 Thioredoxins in Higher Plants -- 5 Functional Biochemistry of Trxs Mediated by ROS and RNS -- 6 Role of Trx Under Salinity -- 7 Role of Trx Under Drought -- 8 Role of Trx Under Extreme Temperatures -- 9 Concluding Remarks -- Acknowledgements -- References -- 8 Biosynthesis and Regulation of Ascorbic Acid in Plants -- Abstract -- 1 Introduction -- 2 Biosynthesis of Ascorbic Acid -- 2.1 d-Mannose/l-Galactose Pathway -- 2.1.1 Phosphomannose Isomerase (PMI) -- 2.1.2 Phosphomannose Mutase (PMM) -- 2.1.3 GDP-d-Mannose Pyrophosphorylase (GMP) -- 2.1.4 GDP-d-Mannose-3′,5′-Epimerase (GME) -- 2.1.5 GDP-l-Galactose Phosphorylase (GGP) -- 2.1.6 l-Galactose-1-Phosphate Phosphatase (GPP) -- 2.1.7 l-Galactose Dehydrogenase (l-GalDH) -- 2.1.8 l-Galactono-1,4-Lactone Dehydrogenase (l-GalLDH) -- 2.2 Alternative Ascorbate Biosynthesis Pathways -- 2.2.1 Pathway via d-Glucuronic Acid -- 2.2.2 Pathway via l-Gulose -- 2.2.3 Pathway via d-Galacturonic Acid -- 3 Regulation of Ascorbic Acid Biosynthesis -- 4 Conclusions -- Acknowledgements -- References -- 9 Glutathione Metabolism and Its Function in Higher Plants Adapting to Stress -- Abstract -- 1 Introduction -- 2 Glutathione Biosynthesis -- 3 Glutathione Distribution and Transport -- 4 Glutathione Turnover and Degradation -- 5 Signal Transduction Related to Glutathione -- 5.1 Protein S-Glutathionylation -- 5.2 S-Nitrosoglutathione (GSNO). , 6 Function of Glutathione Metabolism in Plant Tolerance to Abiotic Stress -- 6.1 Salinity and Drought Stresses -- 6.2 High and Low Temperature -- 6.3 Heavy Metals -- 7 Function of Glutathione Metabolism in Plant Resistance to Biotic Stress -- 7.1 GSH as an Antioxidant Protects the Plant Cell in Biotic Stress -- 7.2 Function of GSH in Nuclei -- 7.3 Function of GSH in Chloroplasts -- 7.4 Function of GSH in Apoplast -- 7.5 GSH Participates in Material Synthesis as Precursors -- 7.6 GSH as Transmitting Signals Takes Part in Plant Disease-Resistance -- 8 Concluding Remarks -- Acknowledgements -- References -- 10 Revisiting Carotenoids and Their Role in Plant Stress Responses: From Biosynthesis to Plant Signaling Mechanisms During Stress -- Abstract -- 1 Introduction -- 2 The Building Blocks of Carotenoids and Biosynthesis -- 2.1 Main Genes, Enzymes and Events During Carotenogenesis -- 3 Role of Carotenoids in Plant Stress: Water Deficit and Excess -- 4 Role of Carotenoids in Plant Stress: Nutritional or Chemical -- 5 Role of Carotenoids in Plant Stress: Temperature and Light -- 6 Role of Carotenoids in Plant Stress: Salt Stress -- 7 Role of Carotenoids in Plant Stress: Elevated Greenhouse Gases -- 8 Role of Carotenoids in Plant Stress: Plant Competition and Allelopathy -- 9 Signaling Mechanisms of Carotenoids During Plant Stress -- 9.1 Signaling and Bio-communication -- 10 Future Perspectives and Concluding Remarks -- References -- 11 Abiotic Stress Response in Plants: The Relevance of Tocopherols -- Abstract -- 1 Introduction -- 2 Expression of Tocopherol Synthesis Genes Under Abiotic Stresses -- 3 Tocopherol Status in Plant Cells Under Abiotic Stresses -- 4 Mitigation of Abiotic Stress with Tocopherol Pretreatment -- 5 Conclusion -- References -- 12 Flavonoids (Antioxidants Systems) in Higher Plants and Their Response to Stresses -- Abstract. , 1 Introduction -- 2 Biosynthesis of Flavonoids -- 3 Regulation of Flavonoids -- 4 Flavonoids and Stress Responses -- 4.1 UV and Light Stress -- 4.2 Water and Salt Stress -- 4.3 Ozone -- 4.4 Nitrogen Deficiency and Cold -- 4.5 Heavy Metals and Other Stress Stimuli -- 5 Flavonoids in the Biotic Stress Response -- 6 Concluding Perspectives -- Acknowledgements -- References -- 13 Class III Peroxidases: Functions, Localization and Redox Regulation of Isoenzymes -- Abstract -- 1 Introduction -- 2 Reaction Mechanisms and Structure of POX Isoenzymes -- 2.1 Three Cycles of POXs -- 2.2 Structural Characterisation of POX Isoenzymes -- 3 Substrates -- 4 Antioxidative Function -- 4.1 Redox Regulation of Peroxidatic Cycle and Subcellular Compartmentation -- 5 Pro-oxidative Functions -- 5.1 H2O2-Producing System (Oxidative Cycle) -- 5.2 Hydroxyl Radical-Generating System (Hydroxylic Cycle) -- 6 Effects of Environmental Stresses on POXs -- 7 Genetic Manipulation of POX Isoenzymes Related to Plant Defence Against Environmental Stress Conditions -- 8 Conclusion -- Acknowledgements -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...