GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Plant diseases. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (324 pages)
    Edition: 1st ed.
    ISBN: 9783319415253
    Language: English
    Note: Intro -- Preface -- Contents -- Distribution of Caesium in Soil and its Uptake by Plants -- 1 Introduction -- 1.1 Caesium in the Environment and its Bioavailability in Soils -- 1.2 Radiocaesium Migration in Soil After Chornobyl Catastrophe -- 1.3 Migration of 137Cs in Forest Ecosystems -- 1.4 Radiocaesium in Soil After Fukushima Accident -- 1.5 Radiocaesium Uptake by Plants -- 2 Conclusion -- References -- Factors Influencing the Soil to Plant Transfer of Radiocaesium -- 1 Introduction -- 2 Quantification of the Transfer Process -- 3 Factors Affecting the Caesium Soil-to-Plant Transfer -- 4 Modification of the Radiocaesium Transfer -- 5 Conclusion -- References -- Role of Mycorrhizal Fungi in Caesium Uptake by Plants -- 1 Introduction -- 2 Radiocaesium Accumulation by Ectomycorrhizal Fungi -- 2.1 Arbuscular Mycorrhizal Fungi and Their Role in Radiocaesium Accumulation by Plants -- 2.2 Distribution of Caesium in Plant and AM Fungal Tissues -- 3 Conclusions -- References -- Influence of Biologically Active Preparations on Caesium-137 Transition to Plants from Soil on the Territories Contaminated after Chernobyl Accident -- 1 Introduction -- 2 Objects and Methods of Research -- 2.1 137Cs Vegetation Accumulation in Wood Ecosystems of Cherikov District of Mogilyov Area at Different Levels of Radioactive Pollution of Soil -- 2.2 Research of Specific Specificity of 137Cs Accumulation by Plants of Wood Ecosystems -- 2.3 Definition, Forms of 137Cs Content in  Soil -- 2.4 Factors of 137Cs Accumulation and Transition in Wood Vegetation -- 2.5 Induced Succession of Rhizosphere Communities -- 3 Invertebrates Natural Forest Ecosystems -- 3.1 The Taxonomic Diversity of Soil Fauna -- 3.2 The Number of Soil Fauna -- 3.3 Biomass Soil Fauna -- 3.4 Structure of Soil Fauna Community -- 4 Conclusions -- References. , The Distribution of 137Cs in Selected Compartments of Coniferous Forests in the Czech Republic -- 1 Introduction -- 2 Coniferous Forests as an Important Receptor and Reservoir of Airborne 137Cs -- 2.1 The Movement of 137Cs in Forest Soils -- 2.2 The Redistribution of 137Cs in Forest Vegetation, Mosses and Fungi -- 3 History of the Atmospheric Deposition Loads of 137Cs in the Czech Republic -- 3.1 Global Fallout -- 3.2 Post-Chernobyl Fallout -- 3.3 Post-Fukushima Fallout -- 4 Material and Methods -- 4.1 Determining the 137Cs Activity Concentrations in Forest Humus -- 4.2 Determining the 137Cs Activity Concentrations in Spruce Bark -- 4.3 Determining the 137Cs Activity Concentrations in Forest Soils -- 4.4 Determining the 137Cs Activity Concentrations in Plant Material -- 5 Results -- 5.1 The Large-Scale Distribution of 137Cs in Forest Floor Humus (Oh) -- 5.2 The Large-Scale Distribution of 137Cs in Spruce Bark -- 5.3 The Distribution and Migration of 137Cs in Forest Soils -- 5.4 The Distribution of 137Cs in Selected Biota -- 6 Conclusions -- References -- Cesium Uptake in Plants: Mechanism, Regulation and Application for Phytoremediation -- 1 Introduction -- 2 Cesium Uptake Mechanism -- 2.1 KT/KUP/HAKs -- 2.2 HKT -- 2.3 Voltage-Gated Potassium Channels -- 2.4 Voltage Insensitive Channels -- 2.5 Other Membrane Proteins -- 3 Regulation -- 3.1 Interaction with Potassium and Other Ions -- 3.2 Hormones -- 3.3 Transcriptional Regulation -- 3.4 Post-Transcriptional and Post-Translational Regulation -- 4 Application for Phytoremediation -- 4.1 Use of Plants to Remediate Radiocesium -- 4.2 Search for Plant Species Suitable for Efficient Phytoremediation of Radiocesium -- 4.3 Biotic Factors Influencing Cesium Phytoremediation Efficiency -- 4.4 Abiotic Factors Influencing Cesium Phytoremediation Efficiency -- 4.5 Biosorption of Cesium Using Plant Materials. , 5 Conclusion and Future Perspectives -- References -- Effective Half-Lives of Radiocesium in Terrestrial Plants Observed After Nuclear Power Plant Accidents -- 1 Introduction -- 2 Effective Half-life -- 3 Herbaceous Plants -- 3.1 Very Short-Term Decreasing Rate of Radiocesium in Herbaceous Plants -- 3.2 Short-Term Teff of 137Cs in Herbaceous Plants -- 3.3 Long-Term Teff of 137Cs in Herbaceous Plants -- 4 Woody Plants -- 4.1 Short-term Teff of 137Cs in Fruit and Tea Plants -- 4.2 Short-Term Teff of 137Cs in Japanese Trees Obtained After the Chernobyl and Fukushima Accidents -- 5 Conclusions -- References -- Cultivar Difference and Fertilizer Effects on Radioactive Cesium Accumulation in Rice Grown in Fukushima Paddy Field from 2011 to 2014 -- 1 Introduction -- 2 Difference in Radioactive Cs Accumulation Among Rice Cultivars Grown in the Paddy Field at Fukushima from 2011 to 2014 -- 2.1 Radioactive Cs Accumulation Among Selected 85 Rice Cultivars Grown in Fukushima Paddy Fields in 2011 -- 2.2 Radioactive Cs Accumulation Among 15 Selected Rice Cultivars Grown in Fukushima Paddy Field from 2012 to 2014 -- 3 Radioactive Cs Concentration of Rice Straw and Brown Rice Grown in Paddy Field Under Four Fertilizer Treatments at Kawamata-cho -- 4 Conclusion -- References -- Distribution of 137Cs Between the Components of Pine Forest of Chernobyl NPP Exclusion Zone -- 1 Introduction -- 2 Object and Methods of Research -- 3 Current State of Pine Forests of Belarusian Part of Exclusion Zone of ChNPP -- 4 Distribution of 137Cs Between Horizons of Forest Litter and Soil in Predominant Types of Pine Forest -- 5 Accumulation of 137Cs by Phytomass of Pine Forests -- 6 Conclusions -- References -- Accumulation of Cesium by Aquatic Plants and Algae -- 1 Introduction -- 2 Assimilation and Accumulation of Radioactive Cesium by Living Cells. , 3 Significance of Bioremediation and Phytoremediation for Decontamination of Radionuclides from Polluted Environment -- 4 Assimilation and Accumulation of Radioactive Cesium by Aquatic Plants and Microalgae -- 4.1 Advantage of Microalgae for Decontamination of Water -- 4.2 Screening of High Cesium Accumulating Algae -- 5 High Cesium Accumulating Alga V. crystalliferum -- 6 Conclusion and Future Study -- References -- Regularities of Accumulation of Cs-137 and Other Radionuclides in Aquatic Vegetation in the Territory of the South-Ural Biogeochemical Province of Techno-genic Radioactive Isotopes -- 1 Introduction -- 2 Research Methods -- 3 Results and Discussion -- 3.1 The Study of Regularities of Radionuclides Accumulation in Aquatic Vegetation of a Watercourse: The Techa River -- 3.2 The Study of Regularities of Radionuclides Accumulation in the Aquatic Vegetation of the Stagnant Reservoir V-10 -- 3.3 The Study of Regularities of Radionuclides Accumulation in the Aquatic Vegetation of a Stagnant Reservoir: The Uruskul Lake -- 4 Conclusion -- References -- Radiocesium Phytotoxicity to Single Cell and Higher Plants -- 1 Introduction -- 2 Materials and Methods -- 2.1 Nitellopsis obtusa as Testing System -- 2.2 Lepidium sativum Bioassay -- 2.3 Estimation of the RNA-Polymerase II Activity in the Cell Nuclei of L. sativum Shoots -- 2.4 Estimation of 137Cs Accumulation and Translocation in Plants -- 2.5 Tradescantia Clone BNL 02 Bioassay -- 2.6 Activity Concentrations and Internal Exposure Doses of 137Cs in Tested Plants -- 2.7 Estimation of the External Exposure Doses of 137Cs in L. sativum -- 2.8 Statistical Analysis -- 3 Results and Discussion -- 3.1 The Accumulation Process of 137Cs in the Cell of N. obtusa Algae and Effect to the Electrophysiological Properties of these Cells -- 3.2 Accumulation and Impact of 137Cs on L. sativum. , 3.3 Accumulation and Impact of 137Cs on the Tradescantia Clone BNL 02 -- 3.4 Effects of Internal and External Doses of 137Cs on L. sativum and the Tradescantia Clone BNL 02 -- 4 Conclusions -- References -- Sorbents for Radiocaesium Removal from Natural Water and Soil -- 1 Introduction -- 2 Sorbents for Decontamination of Natural Media Contaminated by Caesium -- 2.1 Natural Aluminosilicates -- 2.1.1 Structure of Aluminosilicates and Nature of their Sorption Behavior -- 2.1.2 Sorption Characteristics of the Natural Aluminosilicates with Respect to Caesium -- 2.2 Granulated Aluminosilicates -- 2.2.1 Synthesis and Mechanical Characteristics -- 2.2.2 Sorption Characteristics of the Granulated Glauconite -- 2.3 Modified Sorbents Based on the Natural Aluminosilicates -- 2.3.1 Physicochemical Modification of the Natural Aluminosilicates -- 2.3.2 Sorption Characteristics of the Ferrocyanide Sorbents Based on the Natural Aluminosilicates -- 3 Use of Granulated and Modified Aluminosilicate Sorbents for Deactivation of Natural Water and Soil -- 3.1 Decontamination of Natural Water -- 3.2 Radiocaesium Removal from Soil -- 4 Conclusions -- References -- Analysis of Transfer Factor, Anatomical Changes and Growth of Plants During Phytoremediation of Cesium Contaminated Solutions -- 1 Introduction -- 2 Material and Methods -- 2.1 Hydroponic Cultivating -- 2.2 Remediation of Cesium and Lead from Mixed Solution -- 2.3 Cesium Absorption and Accumulation -- 2.4 Distribution of Cs in Plants -- 2.5 Transfer Factor -- 2.6 Statistical Analysis -- 2.7 Anatomical Studies -- 3 Results -- 3.1 Absorption and Accumulation of Cesium -- 3.2 Anatomical Studies -- 3.2.1 Primary Structure of Stem in Control Plants -- 3.2.2 Secondary Structure of Stem in Control Plants -- 3.2.3 Structure of Control Leaf -- 3.2.4 Anatomical Structure of Aerial Organs in Treatment with Cesium. , 4 Discussion.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Hazardous waste site remediation. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (335 pages)
    Edition: 1st ed.
    ISBN: 9783319733982
    Language: English
    Note: Intro -- Foreword -- References -- Preface -- References -- Contents -- Contributors -- About the Editors -- Review of Remediation Approaches Implemented in Radioactively Contaminated Areas -- 1 Introduction -- 2 Remediation of Water: Case Studies -- 2.1 Pump and Treat System at Hanford Site (USA) -- 2.2 In situ Permeable Treatment Wall System at West Valley (USA) -- 2.3 Monitored Natural Attenuation at the Monticello Mill Tailing Site (USA) -- 2.4 Enhanced Attenuation Technologies at Savannah River Site (USA) -- 3 Microbial Bioreduction as the Potential Co-treatment of the Groundwater Radionuclide Contaminants -- 4 Remediation of Soil: Excavation and Disposal -- 5 Remediation of Soil: In situ Treatment Technologies -- 5.1 Electrokinetic Remediation -- 5.2 In situ Vitrification -- 5.3 Phytoremediation -- 6 Mathematical Modelling Approaches for Remediation of Contaminated Environments -- 7 Conclusions -- References -- Physicochemical Methods for the Remediation of Radionuclide Contaminated Sites -- 1 Introduction -- 2 Electrokinetic Remediation of Contaminated Soils -- 2.1 Electrokinetic Removal of Radionuclides -- 2.2 Enhanced Electrokinetic Removal of Radionuclides -- 2.3 Electrokinetic Pilot Scale and Field Applications -- 3 In Situ Soil Flushing -- 4 Solidification and Stabilization -- 5 Vitrification -- 6 Conclusions -- References -- Sorption Methods in Rehabilitation of Radioactively Contaminated Lands Using Surface-Modified Sorbents Based on Natural Alumin... -- 1 Introduction -- 2 Requirements for Sorption Materials Being Used for Rehabilitation of Radioactively Contaminated Lands -- 3 Specificity and Capacity of the Sorbents Based on Natural Aluminosilicates with Respect to Cesium and Strontium Radionuclides -- 4 Selectivity of Cesium and Strontium Sorption in Presence of Analogue Elements. , 5 Stability of the Sorbents Based on Natural Aluminosilicates Against Radionuclides Leaching -- 6 Ecological Safety of Using the Sorbents Based on Natural Aluminosilicates for Rehabilitation Radioactively Contaminated Lands -- 7 Decrease of Cesium Radionuclides Transfer from Soil to Agricultural Vegetation -- 8 Conclusions -- References -- Competitive Adsorption as a Physicochemical Ground for Self-Sufficient Decontamination Areas from Radioactive Pollutants -- 1 Introduction -- 2 Competitive Sorption: Statics -- 3 Competitive Sorption: Kinetics -- 4 Strontium (II) Mass Transfer in the System ``HA-Water´´ -- 5 New Competitive Sorption Techniques -- 6 Conclusion -- References -- Biological, Chemical and Nanosorption Approaches in Remediation of Metal Wastes -- 1 Introduction -- 1.1 Origin of Radioactive and Metal Waste -- 2 Types and Functional Properties of Sorbents -- 2.1 Biosorbents -- 2.1.1 Factors Affecting Biosorption -- 2.1.2 Plants -- 2.1.3 Algae -- 2.1.4 Fungi and Yeast -- 2.1.5 Bacteria -- 2.2 Chemisorbents -- 2.2.1 Chemical-Conjugate Absorbent -- 2.3 Nanomaterial -- 2.3.1 Mn and Zr -- 2.3.2 Fe and Fe0 -- 2.3.3 Maghemite -- 2.3.4 Carbon Nanomaterials (CNM) -- 2.3.5 Ti, MgO and ZnO Nanoparticles -- 3 Conclusion -- References -- Potential of Biochar as a Measure for Decreasing Bioavailability of 137Cs in Soil -- 1 Introduction -- 2 Biochar and Its Use in Agriculture -- 2.1 General Characteristics of Biochar -- 2.2 Influence of Biochar on Agrochemical Properties of Soil -- 2.3 Use of Biochar in Agriculture -- 3 Objective and Methods of the Experiment -- 3.1 Design of the Experiments -- 3.2 Measurement Activity Concentration of 137Cs in Soil and Plants and Assessing Its Distribution by Physical-Chemical Forms -- 3.3 Morpho-biological Features of Mangold and Ecological Conditions of Its Cultivation. , 4 Influence of Biochar and Its Composition with Soil Ameliorants on Growth of Plants and Accumulation of 137Cs in Their Biomass -- 4.1 Influence of Biochar on Agrochemical Indicators of Soil -- 4.2 Influence of Biochar on Biological Productivity of Mangold -- 4.3 Influence of Biochar on Accumulation of 137Cs in Plants on Peat Soil -- 4.4 Influence of Biochar on Distribution of 137Cs in Physical and Chemical Forms and Its Availability to Plants -- 5 Conclusions -- References -- Remediation of Agricultural Lands Contaminated by 90Sr -- 1 Introduction -- 2 The Behaviour of 90Sr in Soils as a Basis for the Development of Remediation Methods -- 3 Mechanical Methods of Remediation of Agricultural Lands Contaminated with 90Sr -- 4 Physicochemical Remediation Methods for Agricultural Lands Contaminated with 90Sr -- 4.1 Application of Mineral Fertilizers -- 4.1.1 Nitrogen Fertilizers -- 4.1.2 Potassium Fertilizers -- 4.1.3 Phosphate Fertilizers -- 4.1.4 Complex Application of Mineral Fertilizers (NPK) -- 4.2 Application of Organic Fertilizers -- 4.3 Liming -- 4.4 Complex Application of Mineral Fertilizers, Organic fertilizers and Ameliorants -- 4.5 Action Mechanism of Combined Application of Fertilizers and Ameliorants -- 4.5.1 Effect of Mineral Fertilizers and Ameliorants on Physicochemical Properties of Soil -- 4.5.2 Effect of Mineral Fertilizers and Ameliorants on Biological Mobility of 90Sr -- 4.5.3 Mathematical Model as an Analysis Tool for Description of Processes of Influence of Mineral Fertilizers and Ameliorants ... -- 5 Use of Sorbents -- 6 Combined of Soil-Based Remediation Methods of Grasslands -- 6.1 Effect of Agricultural Practices on RSr Transfer -- 7 Conclusions -- References -- Rehabilitation of Radioactively Contaminated Soil: Use of Bioremediation/Phytoremediation Techniques -- 1 Introduction. , 2 Radioactive Contamination-Site-Specific Problematics -- 2.1 Nuclear Fuel Cycle -- 2.1.1 Uranium Mining and Milling -- 2.1.2 Uranium Fuel Fabrication (Refining, Conversion and Enrichment) -- 2.1.3 Nuclear Power Plants -- 2.1.4 Waste Repositories and Nuclear Fuel Reprocessing -- 2.2 Nuclear Disasters -- 2.3 Nuclear Test Sites -- 2.4 Depleted Military Use Uranium -- 2.5 Use of Radioactive Sources for Medical Purposes -- 3 Bioremediation of Radioactively Contaminated Soils -- 3.1 Bioremediation: A Cost Effective Environmental Friendly Technology -- 3.1.1 In Situ Versus Ex Situ Bioremediation -- 3.1.2 Active Remediation versus Environmental Restoration by Natural Attenuation -- 3.1.3 Biological Remediation versus Physico-chemical Remediation: The Pros and the Cons -- 3.2 Bioremediation of Radionuclides and Metals -- 3.2.1 The Major Players: Bacteria and Fungi -- 3.3 Microbial Transformation and Immobilization in the Context of Bioremediation of Radionuclide and Metal Contaminated Soils -- 3.4 Limitations of Bioremediation, the Final Remarks -- 4 Phytoremediation-Applications and Problems -- 4.1 Chemically Assisted Phytoextraction -- 4.2 Phytoremedition Assisted by Arbuscular Mycorrhizal Fungi -- 5 Conclusion -- References -- Bioremediation and Phytoremediation: Best Approach for Rehabilitation of Soils for Future Use -- 1 Introduction -- 2 Bioremediation and Phytoremediation -- 3 History of Phytoremediation -- 4 Applications of Phytoremediation Techniques -- 4.1 Phytoextraction (Phytoaccumulation) -- 4.2 Rhizofiltration -- 4.3 Phytovolatilization -- 4.4 Phytostabilization -- 5 Phytoremediation of Soil Contaminated with Specific Radionuclides -- 5.1 Phytoremediation of Cs Contaminated Soils -- 5.2 Phytoremediation of U Contaminated Soils -- 5.3 Phytoremediation of Sr, Tc and Cl Contaminated Soils -- 5.4 Phytoremediation of Other Radionuclides. , 6 Conclusions -- References -- Water Decontamination at Radioactively Contaminated Lands -- 1 Introduction -- 2 Decontamination of Natural Water with Various Salt Content from Radionuclides -- 2.1 Decontamination of Fresh Water from Radionuclides -- 2.2 Decontamination of Seawater from Radionuclides -- 3 Decontamination of Drinking Water at Radioactively Contaminated Lands -- 3.1 Drinking Water Deactivation Using Local Installations -- 3.1.1 Individual and Collective Filters for Radionuclides Elimination from Drinking Waters -- 3.1.2 The Method for Filters Life Test -- 3.1.3 The Results of Comparative tests of Various Filters -- 3.1.3.1 The Results of Life Tests of IWF for Decontamination of Drinking Water from Anthropogenic Radionuclides -- 3.1.3.2 The Assessment of Use of Sorbents in Filters for Decontamination of Drinking Water Containing Natural Radionuclides -- 3.1.4 Filters Sanitary Qualifying and Treatment of Spent Filters for Water Deactivation -- 3.2 Large-Scale Deactivation of Drinking Water at Water Treatment Plants -- 4 Conclusions -- References -- Treatment of Radioactive Waste After Rehabilitation of Contaminated Areas -- 1 Rehabilitation Activities at Radioactively Contaminated Lands -- 2 Characterization of Radioactive Waste Being Formed as a Result of Rehabilitation of Radioactively Contaminated Lands -- 2.1 Liquid Radioactive Waste After Deactivation -- 2.2 Solid Radioactive Waste After Deactivation -- 2.2.1 Radioactive Contaminated Soil and Ground -- 2.2.2 Organic Waste -- 2.2.3 Spent Sorbents -- 3 Methods for Treatment of Radioactive Waste After Rehabilitation -- 3.1 Decontamination of Radioactively Contaminated Soils and Grounds -- 3.2 Decontamination of Solutions After Deactivation -- 3.3 Treatment of Spent Sorption Materials and Filters -- 3.4 Treatment of Radioactive Biological Materials. , 4 Disposal of Radioactive Waste After Rehabilitation.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Plant cellular signal transduction. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (275 pages)
    Edition: 1st ed.
    ISBN: 9783030111298
    Language: English
    Note: Intro -- Preface -- References -- Contents -- About the Editors -- Hydrogen Peroxide and Nitric Oxide Generation in Plant Cells: Overview and Queries -- 1 Introduction -- 2 Generation and Scavenging of H2O2 in Plant Cells -- 3 Generation of NO in Plant Cells -- 4 Interplay Among Cell Organelles by NO and H2O2 Signaling: Overview and Queries -- 5 Conclusions -- References -- Hydrogen Peroxide and Nitric Oxide Signaling Network -- 1 Introduction -- 2 NO Signaling Network in Plants -- 2.1 NO Synthesis -- 2.2 Response to NO in Plants -- 2.2.1 Seed Germination -- 2.2.2 Root Growth and Development -- 2.2.3 Ripening and Senescence -- 2.2.4 Stomatal Closure -- 2.2.5 Pollen Tube Growth -- 2.2.6 Disease Resistance -- 2.2.7 Abiotic Stress -- 2.3 NO Signaling Transduction with Other Signaling Molecules -- 3 H2O2 Signaling Network in Plants -- 3.1 H2O2 Generation -- 3.2 Responses to H2O2 in Plants -- 3.2.1 Growth and Development -- 3.2.2 Stress Response -- 4 Crosstalk Between NO and H2O2 Signaling in Plants -- 4.1 Interaction in Growth and Development -- 4.2 Interaction in Stress Responses -- 4.2.1 Drought -- 4.2.2 Salt -- 4.2.3 UV-B -- 4.2.4 Cold -- 4.2.5 Heat -- 4.2.6 Heavy Metal -- 5 Conclusion -- References -- Hydrogen Peroxide (H2O2)- and Nitric Oxide (NO)-Derived Posttranslational Modifications -- 1 Introduction -- 2 H2O2-Derived Posttranslational Modifications -- 2.1 Carbonylation -- 2.2 Sulfhydryl Oxidations -- 3 NO-Derived Posttranslational Modifications -- 3.1 Tyrosine Nitration -- 3.2 S-nitrosylation -- 3.3 Nitroalkylation -- 4 Interplay Between H2O2- and NO-Derived Posttranslational Modifications -- 5 Conclusions and Future Perspectives -- References -- Transcriptional Regulation of Gene Expression Related to Hydrogen Peroxide (H2O2) and Nitric Oxide (NO) -- 1 Introduction. , 2 Nitric Oxide Induces a High Transcriptional Reprogramming Under Physiological and Stress Conditions -- 2.1 Nitric Oxide-Responsive Genes Identified by cDNA-Amplification Fragment Length Polymorphism (cDNA-AFLP) and Microarray Ana... -- 2.2 Nitric Oxide-Induced Transcriptional Regulation Determined by RNA-seq Analysis -- 3 Transcriptional Regulation Mediated by Hydrogen Peroxide -- 4 Interplay Between Hydrogen Peroxide and Nitric Oxide Signaling Events -- 5 Conclusions and Future Perspectives -- References -- Metabolism and Interplay of Reactive Oxygen and Nitrogen Species in Plant Mitochondria -- 1 Introduction -- 2 Redox Level and Production of ROS and RNS in Mitochondria -- 3 Regulation of ROS and RNS Production and Scavenging at the Level of Electron Transport from NADH/NADPH and Succinate to Ubiq... -- 3.1 Complexes I and II -- 3.2 Alternative NADH/NADPH Dehydrogenases -- 4 Regulation of ROS and RNS Production and Scavenging at the Electron Transport Level from Ubiquinol to the Terminal Electron ... -- 4.1 Alternative Oxidase in the Regulation of ROS and RNS Levels in Plants -- 4.2 Cytochrome Pathway in ROS/RNS Production and Scavenging -- 5 Conclusions -- References -- Hydrogen Peroxide and Nitric Oxide Metabolism in Chloroplasts -- 1 Introduction -- 2 ROS Metabolism -- 2.1 ROS Generation in Plants -- 2.2 ROS Scavenging -- 2.2.1 ASC-GSH Cycle and SOD -- 2.2.2 Thioredoxins -- 2.2.3 Peroxiredoxins and Sulfiredoxins -- 3 NO Metabolism -- 3.1 NO Synthesis in Plants -- 3.2 Sources of NO in Plants -- 3.3 NO Generation in Chloroplasts -- 3.4 NO Targets in Chloroplasts -- 4 ROS/RNS and Stress -- 5 ROS-/RNS-Mediated Protein Modifications -- 5.1 Sulfenylation -- 5.2 S-Nitrosylation and Tyr Nitration -- 6 ROS/RNS Cross Talk -- 7 Future Perspectives -- References. , Participation of Hydrogen Peroxide and Nitric Oxide in Improvement of Seed Germination Performance Under Unfavourable Conditio... -- 1 Introduction -- 2 Cold Stratification -- 3 Abiotic Stress-Related Suppression of Seed Germination -- 3.1 Chilling Stress -- 3.2 Salinity and Heavy Metal Stress -- 3.3 Seed Storage Conditions -- 4 The Scientific Basis for Improving Seed Germination by Exogenous Nitric Oxide -- 5 Conclusion -- References -- Nitric Oxide and Hydrogen Peroxide in Root Organogenesis -- 1 Root System Architecture and Patterning -- 2 Primary Root Growth -- 3 Root Branching -- 4 Root Hair Development -- 5 Shoot-to-Root Long-Distance Signaling -- 6 Hormone Cross Talk -- 7 Conclusions -- References -- Nitric Oxide and Hydrogen Peroxide: Signals in Fruit Ripening -- 1 Introduction -- 2 Exogenous Applications of Ethylene Has Differential Responses in Climacteric and Non-climacteric Fruits -- 3 ROS-Hormone Interaction in Fruit Ripening -- 4 NO Levels During Fruit Development and Ripening: Where Does NO Come from? -- 5 From Chloroplasts to Chromoplasts: The Role of NO and H2O2 in Fruit Color Change -- 6 NO and H2O2 in Fruit Postharvest: New Insights -- 7 Conclusions -- References -- Plant Abiotic Stress: Function of Nitric Oxide and Hydrogen Peroxide -- 1 Introduction -- 2 Abiotic Stress in Plants -- 3 Plasma Membrane H+-ATPase -- 4 Function of H2O2 in Abiotic Stress in Plants -- 5 Function of NO in Abiotic Stress in Plants -- 6 Conclusion -- References -- Nitric Oxide and Hydrogen Peroxide in Plant Response to Biotic Stress -- 1 Introduction -- 2 Enrolment of NO and H2O2 in Plant Stress Response -- 2.1 Sources, Signaling and Interaction -- 2.2 Regulation of Gene Expression -- 3 Conclusion -- References -- Biotechnological Application of Nitric Oxide and Hydrogen Peroxide in Plants -- 1 Initial Considerations. , 2 Pharmacological Manipulation of H2O2 and NO Levels in Plant Tissues -- 2.1 Methods for the Delivery of H2O2 and NO to Plant Tissues -- 2.2 Impacts of Exogenous H2O2 and NO on the Shelf Life of Fruit and Vegetables -- 2.3 Impacts of Exogenous H2O2 and NO on Plant Development and Stress Resistance -- 3 Genetic Manipulation of H2O2 and NO Metabolism -- 3.1 Genetic Manipulation of H2O2 Metabolism -- 3.2 Genetic Manipulation of NO Metabolism -- 4 Concluding Remarks -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (253 pages)
    Edition: 1st ed.
    ISBN: 9783030149611
    Series Statement: Radionuclides and Heavy Metals in the Environment Series
    Language: English
    Note: Intro -- Preface -- Contents -- Contributors -- About the Editors -- Uranium in the Beginning of the Nuclear Age: Reflections on the Historical Role of Jáchymov and an Overview of Early and Present Epidemiological Studies -- 1 Introduction -- 2 History of Uranium and the Role of Jáchymov -- 2.1 Some Important Uranium Milestones -- 2.2 Early Mining Period -- 2.3 Radioactive Era -- 2.4 Nuclear Age -- 2.5 World Production of Uranium -- 3 Quantification of Uranium-Related Exposure -- 3.1 Basic Aspects -- 3.2 Exposure of the Public -- 3.3 Exposure of Miners -- 3.4 Pollution of the Environment and Its Mitigation -- 4 Results of Epidemiological Studies -- 5 Conclusion -- References -- Uranium and Its Distribution in Typical Belarusian Soils -- 1 Introduction -- 2 The Nature (Origin) of Uranium in the Territory of Belarus -- 3 Objects and Methods -- 4 Vertical Distribution of Uranium in Soils -- 5 Speciation Uranium in Soils and Kd Coefficient -- 5.1 Uranium in the Interstitial (Pore) Waters of Soils -- 5.2 Reversibly Bound (Exchangeable) and Mobile (Conditionally Biologically Available) Uranium in the Soils -- 5.3 The "Solid Phase-Pore Solution" Distribution Coefficient in Soil (Kd) -- 6 Effect of Temperature on Uranium Mobile Species in the Soils -- 7 Effect of Humidity on Uranium Mobile Species in the Soil -- 8 Conclusions -- References -- Environmental and Health Impact Due to Uranium Mining -- 1 Introduction -- 2 Uranium Characteristics, Reserves and Mining Process -- 2.1 Open-Pit (OP) Mining -- 2.2 Underground (UG) Mining -- 2.3 In Situ Leach (ISL) Mining -- 2.4 Milling Process -- 3 Environmental and Health Impacts Due to the Mining Activities -- 4 Some Case Study on Uranium Mining Impacts -- 4.1 Africa -- 4.2 Portugal -- 4.3 Canada -- 4.4 India -- 5 Recommendations and Conclusions -- References. , Biogeochemistry of Uranium in Tropical Environments -- 1 Introduction -- 2 Geochemistry of U in Natural Waters and Sediments -- 2.1 Toxicity and Uptake of U by Aquatic Organisms -- 3 Geochemistry of U in Tropical Soils -- 3.1 Bioavailability of U in Soils and Soil-to-Plant Transfer Mechanisms -- 4 Conclusions -- References -- The Behaviour of Uranium in Soils and the Mechanisms of Its Accumulation by Agricultural Plants -- 1 Sources of 238U Entrance into Agricultural Ecosystems -- 2 Behaviour and Forms of 238U in Soils of Agricultural Lands -- 3 Mechanisms of Transfer of 238U from Soil to Plants -- 4 The Results of Experimental Studies on the Accumulation of 238U in the Yield of Cereals on Different Soils with the Application of Mineral Fertilisers and Ameliorants -- 4.1 The Effect of Mineral Fertilisers on the Accumulation of 238U in the Barley Crop on the Main Types of Soils of the Non-chernozem Zone -- 4.2 Influence of Mineral Fertilisers and Ameliorants on the Accumulation of 238U in the Cereal Crops -- 5 Conclusions -- References -- Factors Influencing the Soil to Plant Transfer of Uranium -- 1 Introduction -- 2 Transfer Factors -- 3 Factors Affecting the Uranium Soil-to-Plant Transfer -- 3.1 Uranium Speciation in Soil -- 3.2 Influence of Soil Properties -- 4 Conclusion -- References -- Uranium and Plants: Elemental Translocation and Phytoremediation Approaches -- 1 Introduction -- 2 Uranium and Its Application -- 3 Uranium in the Environment -- 4 Plant-Based Remediation -- 5 Membrane Transport and Rhizosphere for Uranium Phytoremediation -- 6 Uranium Uptake by Plants -- 7 Microbial Activities on Uranium -- 8 Accumulation of Uranium in Plants -- 9 Conclusive Remarks -- References -- Soil-to-Crop Transfer Factor: Consideration on Excess Uranium from Phosphate Fertilizer -- 1 Introduction. , 2 Estimation of Excess Amount of U in Agricultural Fields -- 2.1 Correlations Between Th and U Concentrations in Nonagricultural Soil Samples -- 2.2 Concentrations of Estimated essU in Agricultural Fields -- 3 Correlations Between U in Crops and essU in Corresponding Agricultural Soils -- 3.1 Concentrations of U in Crops -- 3.2 Correlations Between U in Crops and essU in Soil -- 4 Soil-to-Crop Transfer Factor of U from a Field Study -- 5 Conclusions -- References -- Influence of Uranium Speciation on Plant Uptake -- 1 Introduction -- 2 Material and Methods -- 2.1 Material -- 2.2 Hydroponic Experiment -- 2.3 Preparation of Different Species of Uranium -- Visual MINTEQ 3.1 Software -- Preparation of UO22+, (UO2)3(OH)5+, and UO2(OH)3− -- Preparation of UO2(CO3)34− and UO2PO4− -- 2.4 Bioaccumulation Amount and Bioaccumulation Factor -- 3 Results and Discussion -- 3.1 Growth Inhibition Rates on the Azolla-Anabaena Under Stresses of Different Species of Uranium -- 3.2 Variation of Uranium Concentrations in Different Hydroponic Solutions -- 3.3 Bioaccumulation Amount and Bioaccumulation Factor of Azolla-Anabaena for Uranium in Different Hydroponic Solutions -- 4 Conclusions -- References -- Assessment Modelling and the Evaluation of Radiological and Chemical Impacts of Uranium on Humans and the Environment -- 1 Introduction -- 2 Quantification of Environmental Transfer Processes -- 2.1 General Considerations -- 2.2 Uptake and Retention in Soils and Sediments -- 2.3 Uptake and Retention of Uranium in Terrestrial Plants -- 2.4 Transfers of Uranium to Terrestrial Animals -- 2.5 Interactions with Freshwater Sediments and Uptake by Freshwater Biota -- 2.6 Interactions with Marine Sediments and Uptake by Marine Biota -- 3 Assessing Radiological and Toxicological Impacts when Environmental Concentrations Are Known -- 3.1 Radiotoxicity to Humans. , 3.2 Chemical Toxicity to Humans -- 3.3 Radiological Toxicity to Biota -- 3.4 Chemical Toxicity to Biota -- 4 Conclusions -- References -- Biokinetic Modelling and Risk Assessment of Uranium in Humans -- 1 Background -- 1.1 Presence in Soil -- 1.2 Presence in Groundwater -- 2 Uranium Exposure to Humans -- 3 Risk Assessment of Uranium Ingestion -- 3.1 Radiological Toxicity -- 3.2 Chemical Toxicity -- 3.3 Age-Dependent Annual Ingestion Dose for Different Age Groups -- 4 Biokinetic Modelling of Uranium in Human Body -- 4.1 Bernard and Struxness Model (1957) -- 4.2 Lipsztein's Model (1981) -- 4.3 Wrenn's Model (1994) -- 4.4 ICRP's Uranium Systemic Model -- 4.5 Hair Compartment Model of Uranium -- 5 Case Study -- 5.1 Study Area -- 5.2 Instrumentation -- 5.3 Uranium Content in Groundwater -- 5.4 Biokinetic Behaviour -- Uranium Burden in Different Compartments in Human Body -- GI Tract -- Blood -- Liver -- Kidneys -- Skeleton -- Other Soft Tissue (OST) -- Urinary Bladder -- Time-Dependent Alteration of Uranium Load -- Transfer Coefficients -- Removal of Uranium from the Body by Various Excretory Paths -- 5.5 Doses to Internal Organs/Tissues -- 6 Summary -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Plants -- Effect of metals on. ; Electronic books.
    Description / Table of Contents: How do metals enter plants? Where do the signals come from and what are the processes involved in remediation of metals in plants? Ths book discusses studies on signaling and remediation processes with recent technological advancement including "omic" studies.
    Type of Medium: Online Resource
    Pages: 1 online resource (267 pages)
    Edition: 1st ed.
    ISBN: 9783642220814
    Language: English
    Note: Intro -- Metal Toxicity in Plants: Perception, Signaling and Remediation -- Preface -- Reference -- Contents -- Heavy Metal Bindings and Their Interactions with Thiol Peptides and Other Biological Ligands in Plant Cells -- 1 Introduction -- 2 Biological Ligands for Heavy Metal Conjugation and Detoxification in Plant Cells -- 2.1 Phytochelatins -- 2.2 Organic Acids, Nicotianamine, Amino Acids, and Phytates -- 2.3 Soluble Phenolics -- 3 Heavy Metal Localization and Distribution -- 3.1 Localization of Heavy Metals in Cells and Tissues of Different Plant Organs -- 3.2 Distribution of Heavy Metals and Conjugating Ligands in Root -- 3.3 Distribution of Heavy Metals and Conjugating Ligands in Shoots -- 4 Conclusion -- References -- Heavy Metal Perception in a Microscale Environment: A Model System Using High Doses of Pollutants -- 1 Introduction -- 2 Microscale Versus Macroscale Analysis: Time Resolved Responses -- 3 ROS Signaling and Antioxidant Responses -- 4 Phytohormone Signaling Pathways -- 5 Conclusion -- References -- Genetic and Molecular Aspects of Metal Tolerance and Hyperaccumulation -- 1 Introduction -- 1.1 Metals as Toxicants -- 1.2 Metals as Stressors -- 1.3 Defining Metal Tolerance -- 1.4 Defining Metal Accumulation -- 2 Genetic Aspects of Tolerance and Accumulation -- 2.1 Evidence from Classical Mendelian Genetics and Mutants -- 2.2 Evidence from Quantitative Genetics and Mapping -- 2.3 Evidence from Reverse Genetics and Genetic Engineering -- 2.4 Evidence from Natural Populations Variability -- 3 Molecular Aspects of Tolerance and Accumulation -- 3.1 Evidence from Physiology and Biochemistry -- 3.2 Evidence from Gene Cloning -- 3.2.1 Gene Copy Number -- 3.2.2 Gene Expression -- 3.2.3 Sequence Variants -- 3.2.4 Structural Information -- 3.3 Evidence from Transcriptomic Analysis -- 4 Conclusion -- References. , Cadmium and Copper Stress Induce a Cellular Oxidative Challenge Leading to Damage Versus Signalling -- 1 Introduction -- 1.1 Cadmium and Copper Uptake and Homeostasis -- 1.1.1 Uptake of Excess Cu and Cd by the Plant Is Unavoidable -- 1.1.2 Chelation and Sequestration of Excess Metals -- 1.2 The Perception of Cd and Cu Stress and the Generation of Excess Reactive Oxygen Species -- 1.2.1 Direct and Indirect Mechanisms of ROS Generation -- 1.2.2 Enzymatic ROS Generation -- 1.2.3 Cd and Cu Disturb Redox Homeostasis in Plant Organelles -- 1.2.4 Perception of the Stress Signal -- 2 The Oxidative Stress Signature Consists of Altered Redox-Related Gene Expression, Enzyme Activities and Metabolites, and Is Informative for the Oxidative Challenge Induced by Metals -- 2.1 Superoxide Scavenging by Superoxide Dismutases -- 2.2 H2O2 Scavenging: Catalases and Ascorbate Peroxidases -- 2.3 Detoxification of ROS Via the Ascorbate-Glutathione Cycle -- 2.4 Antioxidant Metabolites -- 2.5 Description of the Oxidative Stress Signature -- 3 The Oxidative Challenge Can Cause Damage and Trigger Signalling Pathways Leading to Acclimation Responses -- 3.1 Metal-Induced Oxidative Damage -- 3.2 The Cd- and Cu-Induced Oxidative Challenge Activates and Interferes with Signalling Pathways -- 3.3 Retrograde Signalling by Cellular Organelles -- 4 Conclusion -- References -- Insights into Cadmium Toxicity: Reactive Oxygen and Nitrogen Species Function -- 1 Introduction -- 2 Cadmium Toxicity in Plants -- 3 Plant Mechanisms to Cope with Cadmium -- 4 Transcriptomic and Proteomic Analyses Under Cadmium Stress -- 5 ROS Metabolism in Response to Cadmium -- 5.1 ROS Production Under Cd Stress -- 5.2 Antioxidant Systems Under Cd Stress -- 5.2.1 Enzymatic Antioxidants Systems -- 5.2.2 Non-enzymatic Antioxidants Systems -- 6 NO Metabolism in Response to Cadmium. , 6.1 NO Production Under Cd Stress -- 6.2 NO Function and Protection Under Cd Stress -- 7 Organelles Involvement in Cd Stress -- 8 Conclusion -- References -- Exploring the Plant Response to Cadmium Exposure by Transcriptomic, Proteomic and Metabolomic Approaches: Potentiality of High High-Throughput Methods, Promises of Integrative Biology -- 1 Introduction -- 2 Global Response of Plants to Cadmium Exposure -- 2.1 Overview of a Cadmium Exposure in Plants as Evaluated by Transcriptomic, Proteomic and Metabolomic Approaches -- 2.1.1 Primary Metabolism -- 2.1.2 Defence Mechanisms -- 2.2 Transcriptomic Analysis Allow for Large Scale Comparisons Between Species and/or Treatment -- 3 Future Directions -- 3.1 Subcellular-Level Analysis of the Cd Response -- 3.2 Post-translational Modifications: Phosphoproteomic Studies -- 3.3 Systems Biology and Integrated Analysis -- 3.4 Data Mining and Integration: The Bioinformatics Challenge -- 4 Conclusion -- References -- Proteomics as a Toolbox to Study the Metabolic Adjustment of Trees During Exposure to Metal Trace Elements -- 1 Introduction -- 2 Proteomics of Woody Species -- 2.1 Proteomics: General Considerations -- 2.1.1 Protein Extraction and Sample Preparation -- 2.1.2 2D-PAGE -- 2.1.3 Protein Identification -- 2.2 Case Study: Proteome Study of Poplar and Cd Pollution -- 3 Conclusion -- References -- Proteomics of Plant Hyperaccumulators -- 1 Plant Hyperaccumulators -- 2 Methods in Plant Proteomics -- 2.1 Protein Extraction -- 2.2 Protein Separation -- 2.3 Protein Patterns Analysis and Protein Identification -- 3 Proteomic Approaches for Identification of Key Functions in the Hyperaccumulators -- 3.1 Proteins Involved in Plant-Soil Interaction -- 3.2 Root Proteome -- 3.3 Shoot Proteome -- 4 Follow-Up in Proteomic of Hyperaccumulators -- 5 Conclusion -- References. , Heavy Metal Toxicity: Oxidative Stress Parameters and DNA Repair -- 1 Introduction -- 2 Oxidative Stress and Cell Defenses -- 3 DNA Repair Mechanisms: A General Overview -- 3.1 Base Excision Repair (BER) -- 3.2 Nucleotide Excision Repair (NER) -- 3.3 Mismatch Repair (MMR) -- 3.4 Double-Strand Break Repair -- 4 Heavy Metals -- 4.1 Arsenic -- 4.2 Cadmium -- 4.3 Chromium -- 4.4 Copper -- 4.5 Lead -- 4.6 Mercury -- 4.7 Selenium -- 4.8 Zinc -- 5 Heavy Metal Hyperaccumulator Phenotypes in Plants -- 6 Conclusion -- References -- Protein Oxidative Modifications -- 1 Proteins as Molecular Targets of Oxidative Reactions -- 1.1 Protein Oxidative Products -- 2 Metals as Responsible of Protein Oxidation -- 2.1 Metals Ions-Catalyzed Oxidation Systems -- 2.2 Metalloproteins Susceptibility to Oxidative Stress -- 3 Metal Stress in Plants Is Associated to an Increase in Protein Carbonylation -- 3.1 Metals Catalyze Reactive Oxygen Species Generation Inside the Cell -- 4 Metals Can Alter Cell Metabolism by Mediating Protein Carbonylation -- 4.1 Regulation of the Translation of Isoforms: The Catalase -- 5 Carbonylated Protein Degradation -- 5.1 Role of Proteases -- 5.2 Role of 20S Proteasome -- 6 Conclusion -- References -- Zn/Cd/Co/Pb P1b-ATPases in Plants, Physiological Roles and Biological Interest -- 1 Introduction -- 1.1 P-ATPases Subfamily -- 1.2 Structure of the P1B-ATPases -- 2 Physiological Roles and Expression Profiles of Plant P1B-ATPases -- 2.1 HMA1 -- 2.2 HMA6 and HMA8 -- 2.3 HMA5 -- 2.4 HMA7 -- 2.5 HMA2, HMA4 and HMA3 -- 2.5.1 HMA2 and HMA4 -- 2.5.2 HMA3 -- 3 Phylogeny -- 4 Biotechnological Interest -- 4.1 Biofortification -- 4.2 Interest in Phytoremediation -- 5 Conclusion -- References -- Interference of Heavy Metal Toxicity with Auxin Physiology -- 1 Introduction: Auxin as a Growth Regulator -- 2 Auxin: A Mediator Between Growth and Stress Adaptation. , 3 Auxin and Heavy Metal Stress -- 4 Auxin and Essential Metals -- 5 Conclusions -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Plant hormones. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (317 pages)
    Edition: 1st ed.
    ISBN: 9783030774776
    Series Statement: Plant in Challenging Environments Series ; v.2
    DDC: 571.742
    Language: English
    Note: Intro -- Preface -- Contents -- Chapter 1: Plant Hormones and Plant Defense Response Against Pathogens -- 1.1 Perception and Signal Transduction: The Apoplastic Crosstalk -- 1.2 Cell Signaling: Perception of Danger Signal -- 1.2.1 Effectors and Receptors -- 1.2.2 Signal Transduction Pathways -- 1.3 Nitric Oxide, Hydrogen Peroxide and Melatonin as Mediators for Defense Responses -- 1.4 Phytohormones in Pathogen Resistance: Roles and Network -- 1.4.1 Salicylic Acid (SA) -- 1.4.2 Jasmonates (JA), Ethylene (ET) and Polyamines -- 1.4.3 Cytokinins (CK) -- 1.4.4 Auxin -- 1.4.5 Brassinosteroids (BRs) -- 1.4.6 Gibberellins (GAs) -- 1.5 Genome Editing Tools: CRISPR/Cas Technology as New Approach to Improve Crop Resistance -- 1.6 Conclusion -- References -- Chapter 2: Plant Hormones and Nutrient Deficiency Responses -- 2.1 Introduction -- 2.2 Experimental Techniques Used to Study the Role of Hormones in the Regulation of Nutrient Deficiency Responses -- 2.2.1 Hormone Measurements -- 2.2.2 Exogenous Application of Hormones, their Precursors and Inhibitors -- 2.2.3 Use of Mutants Altered in the Regulation of Responses -- 2.2.4 Use of Hormone Mutants -- 2.2.5 Split-Root Experiments -- 2.2.6 Use of Reciprocally Grafted Plants Between WT and Mutants or Transgenic Lines Altered in the Regulation of Responses -- 2.2.7 Use of Detopped Plants, Girdled Plants or Foliar Application of Nutrients and Other Compounds -- 2.2.8 Molecular Techniques (Transcriptomic, Proteomic, Metabolomic, Y2H, BiFC, …) -- 2.3 Nutrient Deficiency Responses -- 2.3.1 General Adaptive Responses -- 2.3.1.1 Shoot-Root Growth Alterations/TOR/SnRKs -- 2.3.1.2 Recycling/Authophagy -- 2.3.1.3 Substitution -- 2.3.2 Specific Responses -- 2.3.2.1 Physiological Responses -- 2.3.2.2 Morphological Responses -- 2.4 Sensors and Transceptors. , 2.5 Role of Hormones in the Regulation of Nutrient Deficiency Responses -- 2.5.1 Role of Hormones on General Adaptive Responses -- 2.5.1.1 Role of Hormones on Shoot-Root Growth Alterations/TOR/SnRKs -- 2.5.1.2 Role of Hormones on Recycling/Authophagy -- 2.5.2 Role of Hormones on Specific Responses -- 2.5.2.1 Role of Hormones on Physiological Responses -- 2.5.2.2 Role of Hormones on Morphological Responses -- 2.6 Crosstalk Between Different Hormones, and Between Hormones and Other Signaling Substances -- 2.7 Concluding Remarks and Future Perspectives -- References -- Chapter 3: Seed Germination: Explicit Crosstalk Between Hormones and ROS -- 3.1 Introduction -- 3.2 Seed Germination: First Sign of Perceptible Growth and Hormonal Interplay -- 3.3 ROS, an Inevitable Player - Signaling and/or Direct Action in Growth -- 3.4 Cross-Talk Between Hormone and ROS During Seed Germination -- 3.5 ROS - PM H+-ATPase - Hormones: Extension of the Signaling Network -- 3.6 Reactive Nitrogen Species (RNS): Another Potential Candidate to Play for Signaling -- 3.7 Conclusion -- References -- Chapter 4: Hormones and Light-Regulated Seedling Development -- 4.1 Light-Regulated Responses During Seedling Development -- 4.2 Light Perception and Signaling in Plants -- 4.2.1 Perception of Light Signals -- 4.2.1.1 Perception of Red and Far-Red Lights -- 4.2.1.2 Perception of Blue Light -- 4.2.1.3 Perception of UV-B Light -- 4.2.2 Transcriptional Hubs Regulating Light-Mediated Changes in Gene Expression -- 4.3 Hormonal Regulation of Dark-Adapted Seedling Growth Beneath the Soil -- 4.4 Hormones Mediate Light-Induced Opening and Expansion of Cotyledons -- 4.5 Regulation of Chlorophyll and Anthocyanin Accumulation by Hormones -- 4.6 Hormones Control Hypocotyl Growth Under Light -- 4.7 Hormonal Regulation of Phototropism and Shade Avoidance Response -- 4.8 Conclusion -- References. , Chapter 5: Light-Mediated Regulation of Plant Hormone Metabolism -- 5.1 Initial Considerations -- 5.2 A Brief Update on Light Signaling in Higher Plants -- 5.3 Mechanistic Links Between Light Perception and Hormone Metabolism in Higher Plants: A Wide Spectrum of Possibilities -- 5.3.1 Light and Auxin Metabolism -- 5.3.2 Light and Gibberellin Metabolism -- 5.3.3 Light and Abscisic Acid Metabolism -- 5.3.4 Light and Cytokinin Metabolism -- 5.3.5 Light and Ethylene Metabolism -- 5.3.6 Light and Brassinosteroid Metabolism -- 5.4 Concluding Remarks -- References -- Chapter 6: Hormones in Photoperiodic Flower Induction -- 6.1 Introduction -- 6.2 Photoperiodic Induction of Flowering -- 6.3 The Effect of Hormones on the Induction of Flowering of Plants with Different Photoperiodic Requirements -- 6.4 Effect of Photoperiod on Hormone Metabolism and Signal Transduction Pathways During Generative Induction -- 6.5 Mechanisms of Hormone Action During Photoperiodic Induction of Flowering -- 6.6 Interactions of Hormones in the Regulation of Flowering Induction in Ipomoea nil -- 6.7 Summary -- References -- Chapter 7: Recent Insights into Auxin-Mediated Molecular Cross Talk Events Associated with Regulation of Root Growth and Architecture During Abiotic Stress in Plants -- 7.1 Introduction -- 7.2 Regulation of Root Architecture -- 7.3 Auxin Efflux Carriers Coordinate Auxin Distribution in Roots During Abiotic Stress -- 7.4 Abiotic-Stress Induced Regulation of Auxin Homoeostasis in Roots -- 7.5 NO and JA Precisely Regulate Root Development by Acting Through Auxin-Mediated Signaling Pathway -- 7.6 ABA and Ethylene Crosstalk Integrates Auxin Signalling in Plant Roots During Osmotic Stress -- 7.7 Hydrogen Sulphide and Indoleamine-Mediated Auxin Signalling in Roots -- 7.8 Concluding Remarks and Future Perspectives -- References. , Chapter 8: Abscisic Acid and Fruit Ripening: Its Role in Grapevine Acclimation to the Environment, a Case of Study -- 8.1 ABA Biochemistry -- 8.2 ABA Physiology -- 8.3 Relevance of ABA in the Physiology of Fruit Ripening -- 8.4 ABA and Grapevine -- 8.5 Conclusions Regarding Grapevines and ABA -- References -- Chapter 9: Biosynthesis and Molecular Mechanism of Brassinosteroids Action -- 9.1 Introduction -- 9.2 Chemical Structure of Brassinosteroids -- 9.3 Metabolism of Brassinosteroids -- 9.4 Brassinosteroids Biosynthesis Pathways -- 9.4.1 Early Steps of Brassinosteroids Biosynthesis -- 9.4.2 Biosynthesis of C27-Brassinosteroids -- 9.4.3 Biosynthesis of C28-Brassinosteroids -- 9.4.4 Biosynthesis of C29-Brassinosteroids -- 9.4.5 Inhibitors of Brassinosteroid Biosynthesis -- 9.5 Signal Transduction of Brassinosteroids -- 9.5.1 Structure of BRI1/BAK1 Receptors -- 9.5.2 Brassinosteroids' Crosstalk with Other Phytohormones -- 9.6 Conclusions and Future Perspectives -- References -- Chapter 10: Regulatory Role of Melatonin in the Redox Network of Plants and Plant Hormone Relationship in Stress -- 10.1 Introduction -- 10.2 Metabolism of ROS and RNS -- 10.3 Melatonin and ROS/RNS -- 10.4 Melatonin in the ROS/RNS Network in Plants -- 10.5 Melatonin and Gene Regulation in the Redox Network -- 10.6 Melatonin and Plant Hormone Relationship -- 10.6.1 Auxin -- 10.6.2 Gibberellin, Abscisic Acid and Cytokinins -- 10.6.3 Ethylene -- 10.6.4 Salicylic Acid and Jasmonic Acid -- 10.6.5 Brassinosteroids, Polyamines and Strigolactones -- 10.7 Conclusions -- References -- Chapter 11: Tryptophan: A Precursor of Signaling Molecules in Higher Plants -- 11.1 Introduction -- 11.2 Tryptophan Is Generated in the Shikimate (Chorismate) Pathway -- 11.2.1 Auxin, Indole-3-Acetic Acid (IAA) -- 11.2.2 Serotonin (5-Hydroxytryptamine, 5-HT) -- 11.2.3 Melatonin (N-Acetyl-5-Methoxytryptamine). , 11.2.3.1 Abiotic Stress -- 11.2.3.2 Fruit Ripening and Postharvest -- 11.3 Conclusions and Future Perspectives -- References -- Chapter 12: GABA and Proline Metabolism in Response to Stress -- 12.1 Introduction -- 12.2 Biosynthesis and Degradation of GABA in Plants -- 12.3 Proline Metabolism in Plants -- 12.4 GABA and Proline Involvement in Abiotic Stresses Responses -- 12.5 GABA and Proline Responses in Plants Under Biotic Stresses -- 12.6 Potential Functions of GABA in Plant Response to Abiotic and Biotic Stress -- 12.7 Potential Functional Implications of Proline in Plants Under Stress -- 12.8 Potential Links Between GABA and Proline Metabolism and Hormone Signalling -- 12.9 Upcoming Challenges for the Understanding of Proline and GABA Contributions to Stress Tolerance in Plants -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Plants -- Effect of heavy metals on. ; Electronic books.
    Description / Table of Contents: This book presents comprehensive and concise information on recent advances in the field of metal transport and how genetic diversity affects heavy metal transport in plants. It also covers phytoremediation.
    Type of Medium: Online Resource
    Pages: 1 online resource (245 pages)
    Edition: 1st ed.
    ISBN: 9783642384691
    Language: English
    Note: Intro -- Preface -- Contents -- 1 Metalloenzymes Involved in the Metabolism of Reactive Oxygen Species and Heavy Metal Stress -- Abstract -- 1…Introduction -- 2…Catalase (CAT -- EC 1.11.1.6) -- 3…Superoxide Dismutase (SOD, EC 1.15.1.1) -- 4…Ascorbate Peroxidase (APX -- EC 1.11.1.11) -- 5…Xanthine Oxidoreductase -- 6…Conclusions -- Acknowledgments -- References -- 2 Metal Transporters in Plants -- Abstract -- 1…Introduction -- 2…Plants and Heavy Metals -- 2.1 Glutathione and Related Thiols -- 2.2 Metallothionein-like ProteinsMetallothionein-like Proteins and Metallothionein Expression -- 2.3 Induction of Thiols by Heavy Metals -- 3…Accumulation of Heavy Metals by Different Plant Species -- 3.1 Phytoremediation -- 3.2 Basic Mechanisms of Phytoremediation -- 3.3 HyperaccumulatorHyperaccumulator -- 3.3.1 Nickel -- 3.3.2 Zinc and Lead -- 3.3.3 Cadmium -- 3.3.4 Cobalt and Copper -- 3.3.5 Manganese -- 3.3.6 Selenium -- 4…Conclusion -- Acknowledgments -- References -- 3 Biochemistry of Metals/Metalloids Toward Remediation Process -- Abstract -- 1…IntroductionIntroduction -- 1.1 Plants as Accumulators of MetalsPlants as Accumulators of Metals -- 1.2 Hyperaccumulator PlantsHyperaccumulator Plants -- 1.3 High Biomass CropsHigh Biomass Crops -- 2…Factors Affecting Metal Uptake by PlantsFactors Affecting Metal Uptake by Plants -- 3…Mechanism of Glutathione-Mediated Metal Stress Tolerant in PlantsMechanism of Glutathione-Mediated Metal Stress Tolerant in Plants -- 4…Metals Uptake by PlantsMetals Uptake by Plants -- 5…Root-to-Shoot TranslocationRoot-to-Shoot Translocation -- 6…Detoxification/SequestrationDetoxification/Sequestration -- 7…Improvement for Enhanced PhytoextractionImprovement for Enhanced Phytoextraction -- 8…ConclusionsConclusions -- References -- 4 Role of Phytochelatins in Heavy Metal Stress and Detoxification Mechanisms in Plants -- Abstract. , 1…Introduction -- 2…Heavy Metal Uptake and Accumulation by Plants -- 3…Root System, Transporters and Heavy Metals -- 4…Sequestration of Metals into Vacuole -- 5…Role of Metal-Binding Ligands -- 6…Phytochelatins: The Heavy Metal Chelator -- 7…Phytochelatins Biosynthesis -- 8…Role of Phytochelatins in Heavy Metal Stress and Detoxification -- 9…Phytochelatins on Sulfur MetabolismSulfur Metabolism During Heavy Metal Stress -- 10…Concluding Remarks -- Acknowledgments -- References -- 5 Detoxification and Tolerance of Heavy Metal in Tobacco Plants -- Abstract -- 1…Introduction -- 2… Distribution Rule of HMs in Tobacco -- 3… Physiological Detoxification Mechanism of Tobacco to HMs Stress -- 3.1 Antioxidative Enzymes or Antioxidants -- 3.2 The Role of Trichomes and Crystals -- 4…The Special Genes Influencing Tobacco HMs Accumulation -- 5…How to Regulate Tobacco HMs Accumulation -- 5.1 Ensuring the Safety of Tobacco Leaf -- 5.2 Improving Soil Phytoremediation Efficacy -- 6…Conclusion -- Acknowledgments -- References -- 6 Heavy Metal Uptake and Tolerance of Charophytes -- Abstract -- 1…Introduction -- 2…Calcification and Nutrient Store -- 3…Carbonate-Bound Metals Fraction -- 4…Heavy Metal and Tolerance Capability of Charophytes -- 5…Metal Binding and Accumulation Mechanism in Charophytes -- 6…Conclusion -- References -- 7 Molecular Mechanisms Involved in Lead Uptake, Toxicity and Detoxification in Higher Plants -- Abstract -- 1…Introduction -- 2…Plant Absorption of Lead -- 3…Lead in the Root and Its Translocation to the Aerial Parts -- 3.1 Radial Diffusion in the Root -- 3.1.1 Apoplastic Pathway -- 3.1.2 Symplastic Pathway -- 3.2 Detoxification Mechanisms -- 3.2.1 Constitutive Mechanisms -- 3.2.2 Inducible Mechanisms -- General Mechanisms -- Phytochelatins -- Metallothioneins -- 3.3 Translocation to the Aerial Parts of the Plant -- 4…Lead Effects on Plants. , 4.1 Effects on the Cell Constituents -- 4.1.1 Effects on the Cell Envelopes -- 4.1.2 Effects on Proteins -- Effects on the Protein Pool -- Inactivation Mechanisms -- Activation Mechanisms -- 4.1.3 Antimitotic and Genotoxic Action of Lead -- 4.2 Water Status -- 4.3 Mineral Nutrition -- 4.4 Photosynthesis -- 4.5 Respiration -- 5…Lead and Oxidative Stress -- 5.1 Lead-Induced Oxidative Stress -- 5.2 Role of NADPH-Oxidase in Lead-Induced Toxicity -- 5.2.1 Activation of NADPH-Oxidase -- 5.2.2 Implication of NADPH-Oxidase in Lead-Induced Toxicity -- 5.2.3 Alternative Sources of ROS -- 6…Conclusion and Perspectives -- References -- 8 Interpopulation Responses to Metal Pollution: Metal Tolerance in Wetland Plants -- Abstract -- 1…Introduction: Metal Pollution -- 2…Plant Tolerance to Metals, General Considerations -- 3…Interpopulation Metal Tolerance Between Dryland and Wetland Plants, an Overview -- 4…Other Considerations in Relation with Environmental Factors and Population Metal Tolerance Responses in Wetland Ecosystems -- 5…Future Actions -- Acknowledgments -- References -- 9 Intraspecific Variation in Metal Tolerance of Plants -- Abstract -- 1…Introduction -- 2…Assessment of Variation in Metal Tolerance and Accumulation -- 2.1 In Vitro Screening Approach -- 3…Evaluation of Variability of Different Genotypes in Response to Exogenous Application of Heavy Metals -- 3.1 Toward Selenium (Se) BiofortificationBiofortification -- 4…Physiological, Biochemical, and Molecular Differences Related to Metal Tolerance -- 5…Conclusion -- References -- 10 Metallomics and Metabolomics of Plants Under Environmental Stress Caused by Metals -- Abstract -- 1…Introduction -- 2…Metal Toxicity in Plants -- 2.1 Mercury -- 2.2 Cadmium -- 2.3 ArsenicArsenic -- 2.4 Selenium -- 3…Metal InteractionsMetal Interactions in Plants -- 3.1 Selenium--Arsenic Effects on Plants. , 3.2 Sulfur and Selenium AntagonismAntagonism -- 4…MetallomicMetallomic and MetabolomicMetabolomic Techniques for Study of Plants Under Metal Stress -- 4.1 Collection of Plants -- 4.2 Metal Chemical SpeciationChemical Speciation and MetallomicsMetallomics in Plant -- 4.2.1 Sample Treatment in Metallomics -- 4.2.2 Metallomics Workflow -- 4.3 MetabolomicsMetallomics in Plant -- 4.3.1 Metabolomics Workflow for Plant Experiments -- 4.3.2 Sample Treatment for Metabolomic Studies -- 4.3.3 DataData ProcessingProcessingData Processing and Multivariate Analysis -- 5…Case Studies of Plant Under Metal Stress -- 5.1 Experiments ExposureExposure -- 5.2 Plants as BioindicatorsBioindicators in Environmental Monitoring of Metal Pollution -- 5.3 AlgaeAlgae as Functional FoodFunctional Food -- 6…Concluding Remarks -- References -- 11 Biogeochemical Cycling of Arsenic in Soil--Plant Continuum: Perspectives for Phytoremediation -- Abstract -- 1…Introduction -- 2…Bioavailability of Arsenic to Plants -- 3…Fate of Arsenic as Related to Rhizosphere pH -- 4…Fate of Arsenic as Related to Rhizosphere Redox Potential -- 5…Fate of Arsenic as Related to Soil Organic Matter -- 6…Role of Soil Microbes -- 7…Arsenic--Phosphorus Interaction -- 8…Arsenic Accumulation in Crops -- 9…Coordination Environment of Arsenic in Plant Tissue -- 10…Detoxification of Arsenic in Plants -- 11…Phytoremediation by Hyperaccumulating Plants -- 12…Novel Transgenic Strategies for Phytoremediation -- 13…Conclusions -- References -- 12 Evaluation of the Potential of Salt Marsh Plants for Metal Phytoremediation in Estuarine Environment -- Abstract -- 1…Introduction -- 2…Phytoremediation Potential of Halimione portulacoides -- 3…PhytoremediationPhytoremediation Potential of Juncus maritimus and Phragmites australis -- 4…Conclusions -- Acknowledgments -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Singapore :Springer,
    Keywords: Mangrove swamps. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (551 pages)
    Edition: 1st ed.
    ISBN: 9789811624940
    DDC: 577.698
    Language: English
    Note: Intro -- Preface -- Contents -- Editors and Contributors -- 1: Mangroves: Types and Importance -- 1.1 Introduction -- 1.2 Types of Mangroves -- 1.3 Mangrove Ecosystem Services -- 1.3.1 Protecting from Intense Sunlight and UV-Radiation -- 1.3.2 Reducing `Greenhouse Gas´ and Carbon Sequestration -- 1.3.3 Protecting from Cyclone and Storms -- 1.3.4 Protecting from Giant Waves -- 1.3.5 Controlling Flood Damage -- 1.3.6 Preventing Coastal Soil Erosion -- 1.3.7 Trapping Coastal Sediments -- 1.3.8 Deepening of Creeks -- 1.3.9 Trapping and Recycling of Nutrients -- 1.3.10 Litter Decomposition and Nutrient Enrichment -- 1.3.11 Supporting Fishes and Wildlife -- 1.3.12 Supporting Coastal Food Web -- 1.3.13 Protecting Other Coastal Systems -- 1.4 Uses of Mangroves -- 1.4.1 Firewood and Wood Products -- 1.4.2 Honey Collection -- 1.4.3 Mangrove Foliage as Fodder -- 1.4.4 Fisheries and Livelihood -- 1.4.5 Eco-tourism Development -- 1.4.6 Environmental Risk Reduction -- 1.4.7 Traditional Medicinal Value -- 1.4.8 Herbal Tea from Mangroves -- 1.4.9 Antimicrobial and Antioxidant Activities -- 1.4.10 Anticancer Activity of Mangroves -- 1.4.11 Anti-Viral Activities -- 1.4.12 Anti-Diabetic Activity -- 1.4.13 Anticoagulant Activity of Mangroves -- 1.4.14 Neuro-Protective Activity -- 1.4.15 Bioactive Nanoparticle Synthesis -- 1.4.16 Mosquito Repellents and Larvicides -- 1.4.17 Lead Molecules for Drug Development -- 1.4.18 Valuable Genes from Mangroves -- 1.5 Concluding Remarks -- References -- 2: Biogeography of the Mangrove Ecosystem: Floristics, Population Structure, and Conservation Strategies -- 2.1 Introduction -- 2.2 Mangrove Floristics of the World and Distribution Pattern -- 2.3 Phylogeography of Extant Mangrove Species -- 2.4 Origin and Diversification of Mangroves Based on the West Tethyan Hotspot. , 2.4.1 Founder Effect Speciation- Causes for Genotypically and Phenotypically Distinct AEP Population -- 2.4.2 Indian Subcontinent View of Diversification of IWP Mangroves -- 2.5 Conservation and Management -- References -- 3: Mangroves as Feeding and Breeding Grounds -- 3.1 Introduction -- 3.2 Mangroves, a Habitat for Fauna -- 3.2.1 Canopy -- 3.2.2 Trunks and Branches -- 3.2.3 Roots -- 3.2.4 Sediments -- 3.2.5 The Aquatic Environment -- 3.3 Mangrove as Food Resources -- 3.3.1 Primary Production -- 3.3.2 Detritus -- 3.3.3 Secondary Production -- 3.4 Fauna Diversity and Habitat Utilization -- 3.4.1 Terrestrial Invertebrates -- 3.4.2 Aquatic Invertebrates -- 3.4.3 Amphibians -- 3.4.4 Reptiles -- 3.4.5 Mammals -- 3.4.6 Birds -- 3.4.7 Fish -- References -- 4: Factors Influencing Mangrove Ecosystems -- 4.1 Introduction -- 4.2 Climate: Temperature and Rainfall -- 4.3 Ocean Currents and Land Barriers -- 4.4 Coastal Typology Factors -- 4.5 Tidal Range and Inundation Regimes -- 4.6 Wave Action -- 4.7 Tipping Points -- 4.8 Conclusions -- References -- 5: Energy Flux in Mangrove Ecosystems -- 5.1 Introduction -- 5.2 Energy Fluxes Within and Over Mangroves -- 5.3 Short-wave Radiation and Long-wave Radiation -- 5.4 Energy Balance -- 5.5 Photosynthesis in Mangroves -- 5.6 Mangrove Respiration -- 5.7 Consumers in Mangrove Ecosystems -- 5.8 Decomposer of Mangrove Ecosystems -- 5.9 Conclusions -- References -- 6: Nitrogen and Phosphorus Budget in Mangrove Ecosystem -- 6.1 Introduction -- 6.2 Mangroves High Productivity in Low-Nutrient Environment -- 6.2.1 Implication of C:N:P -- 6.2.2 Transfer and Conservation of N, P -- 6.3 Mangroves as Source or Sink of Nutrient -- 6.4 Mangrove N Cycle -- 6.4.1 Nitrogen Stock in Biomass and Sediment -- 6.4.2 Nitrogen Transformation Processes and Fluxes -- 6.4.2.1 Nitrogen Fixation -- 6.4.2.2 Nitrogen Mineralization. , 6.4.2.3 Nitrogen Removal -- 6.4.3 Mangrove N Budget -- 6.5 Mangrove P Cycle -- 6.5.1 Storage and Bioavailability of Phosphorus -- 6.5.2 Input and Output of Phosphorus -- 6.5.3 Mangrove P Budget -- 6.6 Nutrient Budget in the Sundarbans -- 6.6.1 Overview of the Mangrove System -- 6.6.2 State of Nutrients in the Sundarbans -- 6.6.3 Nutrient Budget in the Sundarbans -- 6.6.3.1 Box Model Approach -- 6.6.3.2 Nitrogen Budget -- 6.6.3.3 Phosphorus Budget -- 6.7 Conclusion and Perspective -- References -- 7: Mangroves as a Carbon Sink/Stocks -- 7.1 Introduction -- 7.2 Ecosystem Services by Mangroves -- 7.2.1 Ecological Role of Mangroves -- 7.2.2 Socio-Economic Role of Mangroves -- 7.3 Destruction of Mangroves -- 7.3.1 Anthropogenic Activities -- 7.3.2 Climate Change -- 7.4 Mangroves as a Carbon Sink -- 7.4.1 Biomass -- 7.4.2 Primary Productivity -- 7.5 Recent Advancements in Mangrove Carbon Sinks Studies -- 7.6 Conclusions -- References -- 8: Estimation of Blue Carbon Stock of Mangrove Ecosystem and Its Dynamics in Relation to Hydrogeomorphic Settings and Land Use... -- 8.1 Introduction -- 8.2 Significance of Mangrove in Storing Carbon Over Other Ecosystems -- 8.2.1 Mangroves and Other Forest Ecosystems -- 8.2.2 Mangroves and Tidal Marshes and Seagrasses -- 8.3 Blue Carbon Sequestration -- 8.4 Indian Mangrove Ecosystems -- 8.4.1 Carbon Stored in Sundarban Mangrove (Bangladesh and India) -- 8.5 Threats to Mangrove Ecosystems -- 8.5.1 Degradation and Deforestation -- 8.5.2 Land Use and Land Cover Changes (LULC) -- 8.5.3 Aquaculture -- 8.5.4 Shrimp Farming -- 8.6 Emission of the Carbon Dioxide as Significant Greenhouse Gas (GHGs) Concern -- 8.6.1 Carbon Stock and Related Potential Carbon dioxide Emission of Various Mangroves Across the Globe -- 8.6.2 Estimated Carbon dioxide Emission Based on Ecosystem Loss Since European Settlement. , 8.6.3 Carbon dioxide Emission from Mangrove Conversion to Shrimp Farming -- 8.7 Adaptation Strategies to Balance the Land Use Land Cover and Ecosystem -- 8.7.1 IMTA (Integrated Multi-Trophic Aquaculture) -- 8.7.2 Restoration of Mangroves -- 8.7.3 REDD+ (Reducing Emissions from Deforestation and Forest Degradation) -- 8.8 Conclusion -- References -- 9: Responses of Mangrove Ecosystems to Climate Change in the Anthropocene -- 9.1 Introduction -- 9.2 Past, Present, and Future Responses to Sea-Level Change -- 9.3 Responses to Rising Atmospheric CO2 -- 9.4 Responses to Increasing Temperature -- 9.5 Responses to Changes in Precipitation and Extreme Weather Events -- 9.6 Responses to Coastal Ocean Acidification -- 9.7 Predictions and Conclusions -- References -- 10: Roles of Mangroves in Combating the Climate Change -- 10.1 Introduction -- 10.2 Mangroves -- 10.2.1 Spatial Distribution -- 10.2.2 History -- 10.2.3 Features of Mangroves -- 10.3 Factor Affecting the Growth of Mangroves -- 10.3.1 Temperature -- 10.3.2 Atmospheric CO2 Concentration -- 10.3.3 Sea Level -- 10.3.4 Precipitation -- 10.3.5 Storms -- 10.4 Response of Mangroves to Environmental Stresses/Climate Change -- 10.4.1 Soil Characteristics -- 10.4.2 Salinity -- 10.4.3 Temperature -- 10.4.4 Metal and Organic Pollutant -- 10.4.5 Carbon Dioxide -- 10.4.6 Biotic Factors like Pests -- 10.5 Ecological Importance of Mangroves -- 10.6 Future Prospective and Conclusion -- References -- 11: Role of Mangroves in Pollution Abatement -- 11.1 Introduction -- 11.2 Solutions from the Mangroves to Pollution Problems -- 11.2.1 Reducing Nutrient Loads -- 11.2.2 Reduction of Petroleum Hydrocarbons -- 11.2.3 Pesticides Degradation -- 11.2.4 Heavy Metals Remediation -- 11.2.5 Act as a Plastics Trap -- 11.2.6 Mangrove Residing Microorganisms -- 11.2.7 Carbon Sequestration -- 11.2.8 Coastal Protection. , 11.3 Conclusion -- References -- 12: Measurement and Modeling of Above-Ground Root Systems as Attributes of Flow and Wave Attenuation Function of Mangroves -- 12.1 Introduction -- 12.2 Field Measurement of Mangrove Above-Ground Root Morphology -- 12.2.1 Manual Measurement -- 12.2.1.1 Prop Root System of Rhizophora -- 12.2.1.2 Pneumatophores of Avicennia and Sonneratia Species -- 12.2.2 Ground-Based Remote-Sensing Techniques -- 12.3 Modeling the Morphological Structure of the Prop Root System -- 12.3.1 Model for the Prop Root System with Only Primary Roots -- 12.3.2 Model for the Prop Root System with Multiple-Order Prop Roots -- 12.3.3 Analysis of the Scaling Relation in the Prop Root System -- 12.3.4 Site and Species Differences in the Scaling Relation -- 12.3.5 Representation of the Scaling Relations in Prop Root System -- 12.3.6 Effects of Environmental Conditions on Prop Root System Complexity -- 12.3.7 Prospective of the Development of the Universal Model for Prop Root System -- 12.3.8 Perspectives of Model Development of the Other Types of the Above-Ground Root System -- References -- 13: Mangrove as a Natural Barrier to Environmental Risks and Coastal Protection -- 13.1 Introduction -- 13.2 An Overview of Mangrove Forests -- 13.3 Mangroves as a Natural Barrier and Coastal Protection -- 13.3.1 Mangroves as a Tsunami Barrier -- 13.3.2 Reduction of Wind and Swell Wave Damage -- 13.3.3 Protection against Storm Damage -- 13.3.4 Reduction of Coastal Erosion -- 13.4 Importance of Mangrove Forests -- 13.4.1 Act as Carbon Stores -- 13.4.2 Rural Livelihoods and Mangroves -- 13.4.3 Biodiversity of Mangroves -- 13.5 Conclusions -- References -- 14: Diversity and Community Structure of Polychaetes in Mangroves of Indian Coast -- 14.1 Introduction -- 14.1.1 Importance of Mangroves and its Associated Faunal Groups. , 14.1.2 Role of Polychaetes in Mangrove Environment.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Keywords: Environmental toxicology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (277 pages)
    Edition: 1st ed.
    ISBN: 9783319221717
    DDC: 577.277
    Language: English
    Note: Intro -- Preface -- Contents -- Sources Contributing to Radionuclides in the Environment: With Focus on Radioactive Particles -- 1 Release of Radioactivity in the Environment -- 2 Particle Characterisation Techniques -- 2.1 Identification and Isolation of Radioactive Particles -- 2.2 Nano- and Microfocusing Analytical Techniques -- 2.3 Identification of Isotope Ratios for Source Identification of Single Particles Using MS Techniques -- 3 Linking Sources and Particle Characteristics -- 3.1 Particles Originating from Testing of Nuclear Weapons -- 3.2 Particles Released During Nuclear Accidents -- 3.3 Particles Originating from Nuclear Reprocessing Activities -- 3.3.1 Particles Released from North American Sites -- 3.3.2 Particles Released from Russian Sites -- 3.3.3 Particles Released from European Reprocessing Plants -- 3.4 Particles Associated with Dumping of Waste -- 3.5 Nuclear Accidents Involving Satellites -- 3.6 Conventional Detonation of Nuclear Weapons -- 3.7 Depleted Uranium Ammunitions -- 3.8 Radioactive Particles of Naturally Occurring Radioactive Material Origin -- 4 Conclusion -- References -- Mobility and Bioavailability of Radionuclides in Soils -- 1 Introduction -- 1.1 Objective and Overview -- 1.2 Vertical Movement of Radionuclides in Undisturbed Soils -- 1.3 The Solid-Liquid Distribution Coefficient, Kd -- 1.4 Radionuclide Bioavailability in Soils -- 2 Factors Controlling the Behaviour of Radionuclides in Soil -- 2.1 Soil Organic Matter -- 2.2 Mineral Soil Components -- 2.3 Redox Potential (Eh) and the pH -- 2.4 Rainfall -- 2.5 Soil Structure and Texture -- 2.6 Climate Change and Soil Management -- 3 Behaviour of Key Specific Artificial Radionuclides in Soil -- 3.1 Caesium -- 3.2 Plutonium and Americium -- 3.3 Strontium -- 4 Natural Radionuclides -- 4.1 Uranium -- 4.2 Thorium -- 4.3 Radium -- 5 Conclusions -- References. , The Influence of Edaphic Factors on Spatial and Vertical Distribution of Radionuclides in Soil -- 1 Introduction -- 2 Sources of Radionuclides in Soil -- 3 Environmental Geochemistry of Selected Radionuclides -- 4 Edaphic Factors Influencing Radionuclide Distribution in Soil -- 5 Conclusions -- References -- Modelling Speciation and Distribution of Radionuclides in Agricultural Soils -- 1 Introduction -- 2 Important Soil Parameters and Processes -- 2.1 Chemical Parameters and Processes -- 2.2 Physical Parameters and Processes -- 2.3 Influence of Agricultural Use -- 3 Sorption Modelling Concepts -- 3.1 Empirical Models -- 3.2 Ion Exchange -- 3.3 Mineral Surface Complexation Models -- 3.4 Ion Binding of Organic Matter -- 3.5 Model Parametrisation -- 3.6 Assemblage Models -- 4 Constructing a CA Soil Model -- 4.1 Speciation Code and Representative Soil Components -- 4.2 Thermodynamical Data -- 4.3 Model Parameters -- 4.4 Calculating the Distribution Coefficient -- 5 Verifying and Validating the Model -- 5.1 Comparison of Simulations with Averages of Experimental Kd Values for Two Soil Types -- 5.2 Simulating Experimental Uranium Distributions in Batch Experiments with Several Specified Soils -- 5.3 Sources of Uncertainties -- 6 Conclusion -- References -- Radiotracers as a Tool to Elucidate Trace Element Behaviour in the Water-Sediment Interface -- 1 Introduction -- 2 Experimental Studies on Sediment-Water Exchanges of Radiotracers -- 3 Biological Effects -- 4 Water and Sediment Effects -- 5 Transfer Kinetics from Overlying Water to Sediments -- 6 Conclusions and Recommendations -- References -- Uptake and Retention of Simulated Fallout of Radiocaesium and Radiostrontium by Different Agriculture Crops -- 1 Introduction -- 2 Interception of Radionuclides by Agricultural Crops -- 3 Activity Concentration of Radionuclides in Crops. , 3.1 Distribution of Radionuclides Between Plant Parts -- 4 Foliar Uptake of Radionuclides -- 4.1 Radiocaesium Transfer, from Potato Tops to Tubers -- 5 Conclusions -- References -- Root Uptake/Foliar Uptake in a Natural Ecosystem -- 1 Introduction -- 2 Materials and Methods -- 2.1 Study Area -- 2.2 Sample Collection and Processing -- 2.3 Activity Determination -- 3 Results and Discussion -- 3.1 Activity Concentration Radionuclides as a Function of Soil Depth -- 3.2 Activity Concentration in Sylva Plant Species -- 3.3 Activity Concentration of Radionuclides in Physiologically Different Plants -- 4 Conclusions -- References -- Assessment of Radioactivity in Forest and Grassland Ecosystems -- 1 Introduction -- 2 Materials and Methods -- 2.1 Study Area -- 2.2 Sample Collection and Processing -- 2.3 Activity Determination -- 3 Results and Discussion -- 3.1 Dose Calculations -- 3.1.1 Absorbed and Observed Dose Rates -- 3.1.2 Annual Effective Dose Equivalents -- 3.2 Radiation Hazard Indices -- 3.3 Comparison of the Activity Concentrations with Those Found in Similar Studies -- 4 Conclusions -- References -- Terrestrial Environmental Dynamics of Radioactive Nuclides -- 1 Introduction -- 2 Deposition of Radioactive Nuclides in the Terrestrial Environment -- 3 Radioactive Nuclide Behavior Within Soil -- 4 Radioactive Nuclide Dynamics Within Forest Ecosystem -- 5 Rediffusion of Radioactive Nuclides -- 6 Conclusion -- References -- Biotransformation of Radionuclides: Trends and Challenges -- 1 Introduction -- 1.1 Uranium -- 1.2 Technetium -- 1.3 Plutonium -- 1.4 Neptunium -- 1.5 Strontium and Cesium -- 1.6 Iodine -- 2 Mechanisms of Bioimmobilization of Radionuclides -- 2.1 Biosorption -- 2.2 Bioaccumulation -- 2.3 Biomineralization/Bioprecipitation -- 2.4 Bioreduction -- 3 Prospects and Challenges -- References. , Methods for Decrease of Radionuclides Transfer from Soil to Agricultural Vegetation -- 1 Introduction -- 2 Characteristics of Radioactive Contamination of Soils -- 2.1 The Accident at Mayak PA, 1957 -- 2.2 Chernobyl Disaster, 1986 -- 2.3 Fukushima Dai-Ichi Nuclear Power Plant Accident, 2011 -- 3 Methods for Decrease of Cesium and Strontium Radionuclides from Radioactively Contaminated Soil to Agricultural Vegetation -- 3.1 Removal or Plowing of Contaminated Soil Layer -- 3.2 Use of Mineral Fertilizers -- 3.3 Use of Organic Fertilizers -- 3.4 Liming -- 3.5 Phytoremediation -- 3.6 Addition of Sorbents -- 3.6.1 Materials and Methods -- 3.6.2 Results and Discussion -- 4 Conclusions -- References -- Bacterial Diversity in Clay and Actinide Interactions with Bacterial Isolates in Relation to Nuclear Waste Disposal -- 1 Introduction -- 2 Bacterial Diversity in Clay -- 3 Determination of Actinide Interactions with Mont Terri Opalinus Clay Isolates -- 3.1 U(VI) Interaction Studies with Paenibacillus sp. and Sporomusa sp. Cells -- 3.1.1 U(VI) Binding by Paenibacillus sp. and Sporomusa sp. cells as a Function of [U(VI)] and pH Including the Bacteria-Mediat... -- 3.1.2 U(VI) Speciation Explored by Potentiometric Titration (Lütke et al. 2013 -- Moll et al. 2013a) -- 3.1.3 U(VI) Speciation Explored by Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS) in the Paenibacillus sp. Syst... -- 3.2 Cm(III) Interaction Studies with Paenibacillus sp. and Sporomusa sp. Cells (Lütke 2013 -- Moll et al. 2013a, 2014) -- 4 Summary and Conclusions -- References -- Analysis of Radionuclides in Environmental Samples -- 1 Introduction -- 2 Principles of Sampling and Sample Pretreatment -- 3 Carriers and Tracers in Radiochemical Analysis -- 4 Methods of Nonselective Preconcentration of Radionuclides. , 5 Methods of Selective Preconcentration and Separation of Radionuclides in Radiochemical Analysis -- 5.1 Use of Selective Sorbents -- 5.1.1 Thin-Layer Inorganic Sorbents -- 5.1.2 Surface-Modified Sorbents -- 5.2 Use of Extraction Chromatographic Resins -- 6 Conclusions -- References -- Uncertainty Analysis and Risk Assessment -- 1 Risk Analysis -- 1.1 Definition of Risk -- 1.2 Relationships Between Risk and Uncertainty -- 1.3 Relationship Between Risk and Hazard -- 1.4 Risk Quantification and Presentation -- 1.4.1 Identification of Scenarios -- 1.4.2 Consequence Analysis -- 1.4.3 Assignment of Probabilities to the Scenarios -- 1.4.4 Risk Curves and Risk Matrices -- 1.4.5 Risk Quotients -- 2 Probability -- 3 Uncertainty Analysis -- 3.1 Sources of Uncertainty -- 3.2 Assigning Probability Distributions to Model Parameters -- 3.2.1 Distribution Fitting -- 3.2.2 Maximum Entropy -- 3.2.3 Bayesian Inference -- 3.2.4 Expert Elicitation -- 3.3 Propagation of Uncertainties -- 3.3.1 Monte Carlo Analysis -- 4 Sensitivity Analysis -- 5 Conclusions -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: Environmental management ; Environmental health ; Pollution ; Environment
    Description / Table of Contents: This book provides an overview to researchers, graduate, and undergraduate students, as well as academicians who are interested in arsenic. It covers human health risks and established cases of human ailments and sheds light on prospective control measures, both biological and physico-chemical. Arsenic (As) is a widely distributed element in the environment having no known useful physiological function in plants or animals. Historically, this metalloid has been known to be used widely as a poison. Effects of arsenic have come to light in the past few decades due to its increasing contamination in several parts of world, with the worst situation being in Bangladesh and West Bengal, India. The worrying issue is the ingestion of arsenic through water and food and associated health risks due to its carcinogenic and neurotoxic nature. The impact of the problem is widespread, and it has led to extensive research on finding both the causes and solutions. These attempts have allowed us to understand the various probable causes of arsenic contamination in the environment, and at the same time, have provided a number of possible solutions. It is reported that more than 200 mineral species contain As. Generally, As binds with iron and sulfur to form arsenopyrite. According to one estimate from the World Health Organization (WHO), contextual levels of As in soil ranges from 1 to 40 mg kg-1. Arsenic toxicity is related to its oxidation state which is present in the medium. As is a protoplastic toxin, due to its consequence on sulphydryl group it interferes in cell enzymes, cell respiration and in mitosis. Exposure of As may occur to humans via several industries, such as refining or smelting of metal ores, microelectronics, wood preservation, battery manufacturing, and also to those who work in power plants that burn arsenic-rich coal
    Type of Medium: Online Resource
    Pages: Online-Ressource (XVI, 220 p. 18 illus., 17 illus. in color, online resource)
    ISBN: 9783319543567
    Series Statement: SpringerLink
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...