GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Chromatographic analysis. ; Chemistry, Analytic -- Technique. ; Sustainable development. ; Electronic books.
    Description / Table of Contents: This book examines counter-current, ion size exclusion, supercritical fluids, high-performance thin layers, and gas and size exclusion chromatographic techniques used to separate and purify organic and inorganic analytes. Includes green prep methods and more.
    Type of Medium: Online Resource
    Pages: 1 online resource (220 pages)
    Edition: 1st ed.
    ISBN: 9789400777354
    DDC: 543.8
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Contents -- Contributors -- Chapter-1 -- Saving Solvents in Chromatographic Purifications: The Counter-Current Chromatography Technique -- 1.1 Introduction -- 1.2 CCC Theory -- 1.2.1 High Loadability -- 1.2.2 Scale up Capability -- 1.3 Instrumentation -- 1.3.1 Hydrostatic and Hydrodynamic Instruments -- 1.3.2 Liquid Systems -- 1.4 Counter Current Chromatography, a Green Process -- 1.4.1 Saving Solvents -- 1.4.2 Improving Process Parameters -- 1.4.3 Injecting Crude Samples -- 1.4.4 Greener Solvents -- 1.5 Counter Current Chromatography, a Tool for Green Chemistry Development -- 1.5.1 Natural Products -- 1.5.2 Solute Partition Coefficient Determination -- 1.6 Conclusion -- References -- Chapter-2 -- Ion Size Exclusion Chromatohtaphy on Hypercrosslinked Polystyrene Sorbents as a Green Technology of Separating Mineral Elecyrolites -- 2.1 Introduction -- 2.2 Nanoporous Hypercrosslinked Polystyrene Sorbents -- 2.3 Brief Description of Chromatographic Experiments -- 2.4 Dimensions of Hydrated Ions -- 2.5 Separation of Electrolytes on Nanoporous Hypercrosslinked Sorbents -- 2.6 Basic Features of Size Exclusion Chromatography -- 2.7 Conception of "Ideal Separation Process" -- 2.8 Selectivity of Electrolyte Separation Process -- 2.9 Influence of the Electrolyte Concentration on the Selectivity of Separat -- 2.10 "Acid Retardation", "Base Retardation" and "Salt Retardation" Phenomena -- 2.11 Other Convincing Proofs of Separating Electrolytes via Exclusion Mechanism -- 2.12 Do we Really Need Sorbent Functional Groups to Separate Electrolytes? -- 2.13 Productivity of the Ion Size Exclusion Process -- 2.14 Ion Size Exclusion-Green Technology -- 2.15 Conclusion -- References -- Chapter-3 -- Supercritical Fluid Chromatography: A Green Approach for Separation and Purification of Organic and Inorganic Analytes. , 3.1 Introduction to Green Chemistry and Supercritical Fluid Chromatography -- 3.2 Super Critical Fluids -- 3.2.1 Supercritical Fluid Extraction (SFE) -- 3.3 Supercritical Fluid Chromatography (SFC): An Overview -- 3.3.1 History of Development of Supercritical Fluid Chromatography -- 3.3.2 Instrumentation -- 3.3.2.1 Advantages and Disadvantages of Supercritical Fluid Chromatography -- 3.3.3 Properties of SFC compared to GC and HPLC -- 3.4 Industrial Applications of SCFs and SFCs -- 3.5 Conclusion -- References -- Chapter-4 -- High Performance Thin-Layer Chromatography -- 4.1 Introduction -- 4.2 High Performance Thin-Layer Chromatography -- 4.3 Sample Preparation in HPTLC -- 4.4 Green Separation Modalities in HPTLC -- 4.4.1 "Three R" Philosophy-Replacement of Toxic Solvents with Environmental Friendly Mobi -- 4.4.1.1 Reversed-Phase Chromatography -- 4.4.1.2 Hydrophilic Interaction Chromatography (HILIC) in HPTLC -- 4.4.1.3 Salting-Out Chromatography in HPTLC -- 4.5 Conclusion -- References -- Chapter-5 -- Green Techniques in Gas Chromatography -- 5.1 Introduction -- 5.2 Sample Preparation -- 5.2.1 Direct Methods Without Sample Preparation -- 5.2.2 Solventless Sample Preparation Techniques -- 5.2.2.1 Solid Phase Extraction -- 5.2.2.2 Vapor-Phase Extraction -- 5.2.2.3 Thermal Desorption (TD)/Thermal Extraction (TE) -- 5.2.2.4 Membrane Extraction -- 5.2.3 Sample Preparation Using Environmentally Friendly Solvents -- 5.2.3.1 Supercritical Fluid Extraction (SFE) -- 5.2.3.2 Subcritical Water Extraction (SWE) -- 5.2.3.3 Ionic Liquids (ILs) -- 5.2.3.4 Cloud-Point Extraction -- 5.2.4 Assisted Solvent Extraction -- 5.3 Column Considerations for Green Gas Chromatography -- 5.4 Carrier Gas Considerations for Green Gas Chromatography -- 5.5 Coupling GC with Other Analytical Tools -- 5.6 On-Site Analysis. , 5.7 Conclusion -- References -- Chapter-6 -- Preparation and Purification of Garlic-Derived Organosulfur Compound Allicin by Green Methodologies -- 6.1 Introduction -- 6.2 Green RP-HPLC Purification of the Allicin -- 6.3 Characterization of the Allicin by Green Methodologies -- 6.4 Allicin in Different Garlic Extract by Green RP-HPLC -- 6.5 Allicin Green Chemical Synthesis -- 6.6 Stability of Allicin -- 6.7 Conclusions -- References -- Chapter-7 -- Green Sample Preparation Focusing on Organic Analytes in Complex Matrices -- 7.1 Introduction -- 7.1.1 Trends in Green Analytical Chemistry -- 7.1.2 Green Techniques for Sample Preparation -- 7.1.2.1 Reduction and Solvent Replacement -- Supercritical Fluid Extraction -- Membranes -- 7.1.2.2 Solvent Elimination -- Solid Phase Extraction (SPE) -- Matrix Solid-Phase Dispersion (MSPD) -- Sorptive Extraction Techniques -- Solid Phase Microextraction (SPME) -- Stir-Bar Sorptive Extraction -- 7.2 Conclusions -- References -- Chapter-8 -- Studies Regarding the Optimization of the Solvent Consumption in the Determination of Organochlor -- 8.1 Introduction -- 8.2 Materials and Methods -- 8.2.1 Materials -- 8.2.2 Methods -- 8.3 Results -- 8.4 Discussions -- 8.4.1 TRM1 -- 8.4.2 TRM2 -- 8.5 Conclusions -- References -- Chapter-9 -- Size Exclusion Chromatography a Useful Technique For Speciation Analysis of Polydimethylsiloxanes -- 9.1 Introduction to SEC -- 9.2 SEC Retention Mechanisms -- 9.2.1 Ideal Size Exclusion Mechanism -- 9.2.2 Non-Ideal Size Exclusion Mechanism -- 9.3 The Stationary Phase in SEC -- 9.4 The Mobile Phase in SEC -- 9.5 Analytical Problems -- 9.6 Methods for Column Calibration -- 9.7 Applications of SEC Biomedical and Pharmaceutical -- 9.7.1 SEC as a Useful Technique for Linear Polydimethylsiloxanes Speciation Analysis. , 9.8 Methodology for Linear Polydimethylsiloxanes Speciation Analysis -- 9.8.1 Mobile Phase Selection -- 9.8.2 Stationary Phase Selection -- 9.8.3 Column Conditions -- 9.8.4 Column Calibration -- 9.8.5 Separation of Polydimethylsiloxanes -- 9.9 Conclusions -- References -- Erratum -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Solvents. ; Electronic books.
    Description / Table of Contents: This book offers an overview of types of solvents and discusses their applications in extraction, organic synthesis, biocatalytic processes, production of fine chemicals, biochemical transformations, composite material, energy storage, polymers and more.
    Type of Medium: Online Resource
    Pages: 1 online resource (517 pages)
    Edition: 1st ed.
    ISBN: 9789400728912
    DDC: 541.3482
    Language: English
    Note: Intro -- Green Solvents II -- Preface -- Editor's Biography -- Acknowledgments -- Contents -- Contributors -- Chapter 1: Ionic Liquids as Green Solvents: Progress and Prospects -- 1.1 Introduction -- 1.2 History of Ionic Liquids (ILs) -- 1.3 Structure of Ionic Liquids (ILs) -- 1.3.1 Cations -- 1.3.2 Anions -- 1.4 Synthesis of Ionic Liquids (ILs) -- 1.4.1 Quaternization Reactions -- 1.4.2 Anion-Exchange Reactions -- 1.4.2.1 Lewis-Acid-Based Ionic Liquids (ILs) -- 1.4.2.2 Anion Metathesis -- 1.5 Properties of Ionic Liquids (ILs) -- 1.5.1 Melting Point -- 1.5.2 Volatility -- 1.5.3 Thermal Stability -- 1.5.4 Viscosity -- 1.5.5 Density -- 1.5.6 Polarity -- 1.5.7 Conductivity and Electrochemical Window -- 1.5.8 Toxicity -- 1.5.9 Air and Moisture Stability -- 1.5.10 Cost and Biodegradability -- 1.6 Solvent Properties and Solvent Effects -- 1.6.1 Solute-Ionic Liquids (ILs) Interactions -- 1.6.1.1 Interaction of Ionic Liquids (ILs) with Water -- 1.6.1.2 Interaction of Ionic Liquids (ILs) with Acid and Base -- 1.6.1.3 Interaction of Ionic Liquids (ILs) with Aromatic Hydrocarbon -- 1.6.1.4 Interaction with Chiral Substrates -- 1.7 Conclusions -- References -- Chapter 2: Ionic Liquids as Green Solvents for Alkylation and Acylation -- 2.1 Introduction -- 2.2 Alkylation -- 2.2.1 Ionic Liquids as Green Solvents -- 2.2.2 Ionic Liquids as Dual Green Solvents and Catalysts -- 2.2.3 Ionic Liquids Immobilized on Solid Supports -- 2.3 Acylation -- 2.3.1 Ionic Liquids as Green Solvents -- 2.3.2 Ionic Liquids in Dual Role as Green Solvents and Catalysts -- 2.3.3 Immobilized Ionic Liquids -- 2.4 Remarks -- References -- Chapter 3: Ionic Liquids as Green Solvents for Glycosylation Reactions -- 3.1 Introduction -- 3.2 Preparation of Acid-Ionic Liquids -- 3.3 Reusability of Acid-Ionic Liquids -- 3.4 Tunability and Basicity of Ionic Liquids. , 3.5 Nonvolatility of Ionic Liquids -- 3.6 Conclusions -- References -- Chapter 4: Ionic Liquid Crystals -- 4.1 Introduction -- 4.2 Ionic Liquid Crystals Based on Organic Cationsand Anions -- 4.2.1 Imidazolium-Based Ionic Liquid Crystals -- 4.2.2 Pyrrolidinium-Based Ionic Liquid Crystals -- 4.2.3 Pyridinium and Bipyridinium-Based IonicLiquid Crystals -- 4.2.4 Morpholinium-, Piperazinium-, and Piperidinium-BasedIonic Liquid Crystals -- 4.2.5 Ammonium-Based Ionic Liquid Crystals -- 4.2.6 Guanidinium-Based Ionic Liquid Crystals -- 4.2.7 Phosphonium-Based Ionic Liquid Crystals -- 4.2.8 Anions -- 4.3 Ionic Liquid Crystals Based on Metal Ions -- 4.4 Polymeric Ionic Liquid Crystals -- 4.4.1 Main-Chain Ionic Liquid-Crystalline Polymers -- 4.4.2 Side-Chain Ionic Liquid-Crystalline Polymers -- 4.4.3 Dendrimers -- 4.5 Applications of Ionic Liquid Crystals -- 4.6 Conclusions -- References -- Chapter 5: Application of Ionic Liquids in Extraction and Separation of Metals -- 5.1 Introduction -- 5.2 Processing Metal Oxides and Ores with Ionic Liquids -- 5.2.1 Metal Oxides Processing -- 5.2.2 Mineral Processing -- 5.3 Electrodeposition of Metals Using Ionic Liquids -- 5.3.1 Electrodeposition of Aluminum -- 5.3.2 Electrodeposition of Magnesium -- 5.3.3 Electrodeposition of Titanium -- 5.4 Ionic Liquids in Solvent Extraction of Metal Ions -- 5.5 Conclusions -- References -- Chapter 6: Potential for Hydrogen Sulfide Removal Using Ionic Liquid Solvents -- 6.1 Introduction -- 6.2 Ionic Liquids as Physical Solvents for H 2 S Removal -- 6.3 Hybrid Solvents Comprising Ionic Liquids and Amines -- 6.4 Conclusions and Outlook -- References -- Chapter 7: Biocatalytic Reactions in Ionic Liquid Media -- 7.1 Introduction -- 7.2 Biocatalyst Tested in Ionic Liquids -- 7.2.1 Lipases -- 7.2.2 Esterases and Proteases -- 7.2.3 Glycosidases -- 7.2.4 Oxidoreductases. , 7.3 Effect of the Ionic Liquid Composition on the Activity and Stability of Enzymes -- 7.4 Biotransformation in Ionic Liquids -- 7.4.1 Synthesis of Flavour Esters -- 7.4.2 Biotransformations of Polysaccharides and Nucleotides -- 7.4.3 Synthesis of Biodiesel -- 7.4.4 Synthesis of Polyesters -- 7.4.5 Resolution of Racemates -- 7.4.6 Synthesis of Carbohydrates -- 7.5 Conclusions -- References -- Chapter 8: Ionic Liquids/Supercritical Carbon Dioxide as Advantageous Biphasic Systems in Enzymatic Synthesis -- 8.1 Introduction -- 8.2 Supercritical Carbon Dioxide in Enzymatic Synthesis -- 8.3 Ionic Liquids as Reaction Media in Enzymatic Synthesis -- 8.4 Supercritical Carbon Dioxide/Ionic Liquid Biphasic System in Enzymatic Synthesis -- 8.5 Conclusions -- References -- Chapter 9: Ionic Liquids as Lubricants -- 9.1 Introduction -- 9.2 Overview of Ionic Liquids (ILs) -- 9.2.1 Definition and Types of Ionic Liquids (ILs) -- 9.2.2 Relationship Between Molecular Structure and Properties of Ionic Liquids (ILs) -- 9.3 Common Ionic Liquids (ILs) as Lubricants -- 9.3.1 Ionic Liquids (ILs) as Lubrication Oils -- 9.3.1.1 Ionic Liquids (ILs) as Lubrication Oils for Fe Alloy/Steel or Steel/Steel Contacts -- 9.3.1.2 Ionic Liquids (ILs) as Lubrication Oils of Light Alloys -- 9.3.1.3 Ionic Liquids (ILs) as Lubrication Oils for Specific Contacts -- 9.3.1.4 Ionic Liquids (ILs) as Lubrication Oils Under Vacuum -- 9.3.2 Ionic Liquids (ILs) as Lubrication Additives -- 9.3.2.1 Ionic Liquids (ILs) as Water Additives -- 9.3.2.2 Ionic Liquids (ILs) as Mineral Oil Additives -- 9.3.2.3 Ionic Liquids (ILs) as Synthetic Oil and Lubrication Grease Additives -- 9.3.2.4 Ionic Liquids (ILs) as Polymer Material Additives -- 9.3.3 Additives of Ionic Liquid (IL) Lubricants -- 9.3.4 Thin Films -- 9.4 Function of Ionic Liquids (ILs) as Lubricants. , 9.4.1 Function of Ionic Liquids (ILs) as Lubrication Oils -- 9.4.2 Function of Ionic Liquids (ILs) as Additives or Thin Films -- 9.5 Lubrication Mechanism -- 9.6 Conclusions and Outlook -- References -- Chapter 10: Stability and Activity of Enzymes in Ionic Liquids -- 10.1 Introduction -- 10.1.1 Ionic Liquid in Reference to Its Origin -- 10.1.2 Ionic Liquid as a Solvent -- 10.1.3 Enzymes in Ionic Liquids -- 10.2 Enzyme Stability in Ionic Liquids -- 10.2.1 Stability of Lipases -- 10.2.2 Stability of Monellin -- 10.2.3 Stability of Cytochrome c -- 10.2.4 Stability of α -Chymotrypsin -- 10.2.5 Stability of Penicillin G Acylase -- 10.3 Methods of Stabilizing Proteins/Enzymes in Ionic Liquids -- 10.3.1 Stabilization by Ionic Liquid Coating -- 10.3.2 Stabilization by Anchoring with Carbon Nanotubes -- 10.3.3 Stabilization by Capping with Nanoparticles -- 10.3.4 Stabilization by Entrapment in Hydrogels -- 10.3.5 Stabilization by Enzyme Modification -- 10.3.6 Stabilization by Emulsification of Ionic Liquids -- 10.4 Catalytic Activity of Enzymes in Ionic Liquids -- 10.4.1 Biotransformations by Lipases and Esterases -- 10.4.1.1 Esterification and Transesterification Reaction -- 10.4.1.2 Enantioselective Hydrolysis Reaction -- 10.4.1.3 Enantioselective Acylation Reaction -- 10.4.1.4 Kinetic Resolution of Alcohols -- 10.4.2 Reactions Catalyzed by Proteases -- 10.4.3 Carbohydrate Synthesis by Glycosidases -- 10.4.4 Hydrocyanation Reaction by Lyases -- 10.4.5 Biocatalytic Redox Reactions by Oxidoreductases -- 10.4.6 Enzymatic Polymerization Reaction in Ionic Liquids -- 10.5 Stability/Activity Vis-à-vis Solvent Property of Ionic Liquids: A Structure-Activity Relationship (SAR) Analysis -- 10.6 Conclusions -- References -- Chapter 11: Supported Ionic Liquid Membranes: Preparation, Stability and Applications -- 11.1 Introduction. , 11.2 Methods of Preparation and Characterization of Supported Ionic Liquid Membranes -- 11.3 Stability of Supported Ionic Liquid Membranes -- 11.4 Mechanism of Transport Through Supported Ionic Liquid Membranes -- 11.5 Fields of Application of Supported Liquid Membranes -- 11.6 Conclusions -- References -- Chapter 12: Application of Ionic Liquids in Multicomponent Reactions -- 12.1 Introduction -- 12.1.1 Ionic Liquids Based on 1-Butyl-3-methylimidazolium -- 12.1.1.1 1-Butyl-3-methylimidazolium -- 12.1.1.2 1-Butyl-3-methylimidazolium Hexafluorophosphate -- 12.1.1.3 1-n-Butyl-3-methylimidazolium Bromide -- 12.1.1.4 Butyl Methyl Imidazolium Hydroxide -- 12.1.1.5 Other 1-Butyl-3-methylimidazolium-Based Ionic Liquids -- 12.1.2 Other Imidazole-Based Ionic Liquids -- 12.1.2.1 Ionic Liquid-Supported Iodoarenes -- 12.1.2.2 1,3- n -Dibutylimidazolium Bromide -- 12.1.2.3 1- n -Butylimidazolium Tetrafluoroborate -- 12.1.2.4 1-Ethyl-3-methylimidazole Acetate -- 12.1.2.5 An Acidic Ionic Liquid -- 12.1.2.6 Task-Specific Ionic Liquids -- 12.1.2.7 1-Methyl-3-heptyl-imidazolium Tetrafluoroborate -- 12.1.2.8 1-[2-(Acetoacetyloxy)ethyl]-3-methylimidazolium Hexafluorophosphate-Bound Acetoacetate -- 12.1.2.9 1-[2-(Acetoacetyloxy)ethyl]-3-methylimidazolium Tetrafluoroborate- or Hexafluorophosphate-Bound b -oxo Esters -- 12.1.2.10 1-(2-Hydroxyethyl)-3-methylimidazolium Tetrafluoroborate or Hexafluorophosphate and N -(2-Hydroxyethyl)pyridinium Tetrafluoroborate or Hexafluorophosphate -- 12.1.2.11 PEG-1000-Based Dicationic Acidic Ionic Liquid -- 12.1.2.12 1-Ethyl-3-methylimidazolium ( S)-2-Pyrrolidinecarboxylic Acid Salt -- 12.1.2.13 1-Methyl-3-pentylimidazolium Bromide -- 12.1.2.14 3-Methyl-1-sulfonic Acid Imidazolium Chloride -- 12.1.3 Other Ionic Liquids -- 12.2 Conclusions -- References. , Chapter 13: Ionic Liquids as Binary Mixtures with Selected Molecular Solvents, Reactivity Characterisation and Molecular-Microscopic Properties.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Ion exchange. ; Ion exchange. fast. ; Electronic books.
    Description / Table of Contents: This overview of the industrial applications of ion-exchange materials focuses on their use in a host of fields including chemical and biochemical separation, water purification, biomedical science, toxic metal recovery and manufacturing alcoholic drinks.
    Type of Medium: Online Resource
    Pages: 1 online resource (462 pages)
    Edition: 1st ed.
    ISBN: 9789400740266
    Language: English
    Note: Intro -- Ion Exchange Technology II -- Preface -- Editors' Bios -- Contents -- Contributors -- List of Abbreviations -- Chapter 1: Separation of Amino Acids, Peptides, and Proteins by Ion Exchange Chromatography -- Chapter 2: Application of Ion Exchanger in the Separation of Whey Proteins and Lactin from Milk Whey -- Chapter 3: Application of Ion Exchangers in Speciation and Fractionation of Elements in Food and Beverages -- Chapter 4: Applications of Ion Exchangers in Alcohol Beverage Industry -- Chapter 5: Use of Ion Exchange Resins in Continuous Chromatography for Sugar Processing -- Chapter 6: Application of Ion Exchange Resins in the Synthesis of Isobutyl Acetate -- Chapter 7: Therapeutic Applications of Ion Exchange Resins -- Chapter 8: Application of Ion Exchange Resins in Kidney Dialysis -- Chapter 9: Zeolites as Inorganic Ion Exchangers for Environmental Applications: An Overview -- Chapter 10: Ion Exchange Materials and Environmental Remediation -- Chapter 11: Metal Recovery, Separation and/or Pre-concentration -- Chapter 12: Application of Ion Exchange Resins in Selective Separation of Cr(III) from Electroplating Effluents -- Chapter 13: Effect of Temperature, Zinc, and Cadmium Ions on the Removal of Cr(VI) from Aqueous Solution via Ion Exchange with Hydrotalcite -- Chapter 14: An Overview of '3d' and '4f' Metal Ions: Sorption Study with Phenolic Resins -- Chapter 15: Inorganic Ion Exchangers in Paper and Thin-Layer Chromatographic Separations -- Chapter 16: Cation-Exchanged Silica Gel-Based Thin-Layer Chromatography of Organic and Inorganic Compounds -- Chapter 17: Ion Exchange Technology: A Promising Approach for Anions Removal from Water -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Environmental chemistry ; Catalysis ; Pollution prevention ; Analytical chemistry ; Electrochemistry
    Description / Table of Contents: Preface -- Chapter 1. Conversion of carbon dioxide into liquid hydrocarbons in the presence of a cobalt-containing catalysts -- Chapter 2. Conversion of carbon dioxide using lead/composite/oxides electrodes into formate/formic acid -- Chapter 3. Thermo-chemical conversion of carbon dioxide to carbon monoxide by reverse water-gas shift reaction over ceria-based catalysts -- Chapter 4. Photocatalytic systems for carbon dioxide conversion to hydrocarbons -- Chapter 5. Electrochemical reduction of carbon dioxide to methanol using metal-organic frameworks and non-metal-organic frameworks catalysts -- Chapter 6. Photocatalytic conversion of carbon dioxide into hydrocarbons -- Chapter 7. Electrocatalytic production of methanol from carbon dioxide.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(X, 211 p. 53 illus., 43 illus. in color.)
    Edition: 1st ed. 2020.
    ISBN: 9783030286224
    Series Statement: Environmental Chemistry for a Sustainable World 40
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Environmental chemistry. ; Environmental management. ; Water. ; Waste management.
    Description / Table of Contents: Chapter 1 Pseudomonas species for the environmental cleaning of toxic heavy metals -- Chapter 2 Hardware, Hardware and Software Remediation technologies for Water Resources Pollution -- Chapter 3 Anaerobic Biotechnology for the Treatment of Pharmaceutical and Hospital Wastewaters Treatment -- Chapter 4 Bacterial metabolites for removal of toxic dyes and heavy metals -- Chapter 5 Bacterial biofilms for bioremediation of metal-contaminated aquatic environments -- Chapter 6 Laccase-mediated bioremediation of dye-based hazardous pollutants -- Chapter 7 Remediation of freshwaters contaminated by cyanobacteria -- Chapter 8 Biochemical methods for water purification -- Chapter 9 Biosorptive elimination of toxic pollutants from contaminated water -- Chapter 10 Microbial exopolymeric substances for metal removal -- Chapter 11 Bioremediation of Bisphenols and Phthalates from Industrial effluents: A Review -- Chapter 13 Potential of Tree barks and bark extracts in the Bioremediation of Heavy metals from polluted water sources: A review -- Chapter 14 Environmental Effects of Textile Dyes and Their Microbial Detoxification -- Chapter 15 Natural remediation techniques for water quality protection and restoration -- Chapter 16 Phytoextraction of heavy metals from complex industrial waste disposal sites -- Chapter 17 Biosorption of Nickel (II) and Cadmium (II) -- Chapter 18 Biological strategies for heavy metal remediation.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XV, 424 p. 52 illus., 33 illus. in color.)
    Edition: 1st ed. 2020.
    ISBN: 9783030489854
    Series Statement: Environmental Chemistry for a Sustainable World 51
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Waste management. ; Food—Biotechnology. ; Microbiology. ; Nutrition   . ; Bioorganic chemistry.
    Description / Table of Contents: Bioconversion of biowastes for energy applications -- Green and sustainable biomass processing for fuels and chemicals -- Bioconversion of food waste into ethanol -- Bioconversion of lignocellulosic residues into hydrogen -- Palm oil industry − processes, by-product treatment and value-addition -- Bionanocomposites derived from polysaccharides: green fabrication and applications -- Multi-utilization of cow dung as biomass.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VI, 393 p. 133 illus., 109 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030618377
    Series Statement: Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Chemistry. ; Engineering. ; Environment. ; Materials science. ; Aufsatzsammlung ; Grüne Chemie
    Description / Table of Contents: Biomass-derived polyurethanes for sustainable future -- Mechanochemistry: a power tool for green synthesis -- Future trends in green synthesis -- Green synthesis of hierarchically structured metal and metal oxide nanomaterials -- Bioprivileged molecules -- Application of membrane in reaction engineering for green synthesis -- Photoenzymatic green synthesis -- Biomass derived carbons and their energy applications.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VI, 301 p. 259 illus., 83 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030678845
    Series Statement: Advances in Science, Technology & Innovation, IEREK Interdisciplinary Series for Sustainable Development
    RVK:
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Environmental chemistry. ; Analytical chemistry. ; Environmental management. ; Water.
    Description / Table of Contents: Chapter 1 Synthesis of activated carbons for heavy metals removal -- Chapter 2 Polymer absorbents for heavy metal removal -- Chapter 3 Metal oxyhydroxides composites for halogens and metalloids removal -- Chapter 4 Montmorillonite clay composite For heavy metal removal from water -- Chapter 5 Cellulose-based adsorbents for heavy metal removal -- Chapter 6 Recovery of heavy metals by membrane adsorbers -- Chapter 7 Metal hexacyanoferrate absorbents for heavy metal removal -- Chapter 8 Agriculture waste absorbents for heavy metal removal -- Chapter 9 Biosorption of metal ions present in industrial wastewater -- Chapter 10 Heavy metal removal by low cost adsorbents -- Chapter 11 Characteristics and adsorptive treatment of wastewaters containing dyes -- Chapter 12 Application of adsorption methods for boron uptake -- Chapter 13 Waste fruit cortexes for the removal of heavy metals from water -- Chapter 14 Biomass-based absorbents for heavy metal removal -- Chapter 15 Remediation of dyes from industrial wastewater using low-cost adsorbents -- Chapter 16 Hybrid adsorbents for dye removal from wastewater.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XIII, 462 p. 138 illus., 103 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030474003
    Series Statement: Environmental Chemistry for a Sustainable World 49
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Environmental chemistry. ; Environmental management. ; Pollution. ; Waste management. ; Water.
    Description / Table of Contents: Chapter 01 Photocatalytic Remediation of Organic Pollutants in Waste -- Chapter 02 Carbon Nitride/Metal Oxide Hybrids for Visible Light Harvesting and Water Remediation -- Chapter 03 Metal and Carbon Quantum Dots Photocatalysts for Water Purification -- Chapter 04 Photocatalytic Degradation of Azo Dyes in Water -- Chapter 05 Sonochemical Treatment of Textile Wastewater -- Chapter 06 Degradation Mechanism of Pollutants using Sono-Hybrid Advanced Oxidation Processes -- Chapter 07 Photocatalytic Nanomaterials for Bacterial Disinfection -- Chapter 08 Role of Membranes in Wastewater Treatment -- Chapter 09 Nanomaterials for the Photoremediation of Pollutants -- Chapter 10 Bismuth-Based Compounds as Visible Light Photocatalyst for Remediation and Water Splitting -- Chapter 11 Solar Photocatalytic Treatment of Tannery Effluents -- Chapter 12 Functionalized Ionic Liquids for fhe Photodegradation of Dyes -- Chapter 13 Photocatalytic Degradation of Chlorophenols and Antibiotics from Wastewater.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(XV, 438 p. 139 illus., 75 illus. in color.)
    Edition: 1st ed. 2021.
    ISBN: 9783030547233
    Series Statement: Environmental Chemistry for a Sustainable World 57
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Cham : Springer International Publishing | Cham : Imprint: Springer
    Keywords: Agriculture ; Air pollution ; Green chemistry ; Pollution prevention
    Description / Table of Contents: Preface -- Chapter 1. Nanosponges for carbon dioxide sequestration (Diana Azevedo) -- Chapter 2. Absorbents, media, and reagents for carbon dioxide capture and utilization (Khairiraihanna Johari) -- Chapter 3. Metal oxides for carbon dioxide capture (Lakshminarayana Bhatta) -- Chapter 4. Hybrid membranes for carbon capture (Mohammad Mesbah) -- Chapter 5. Ionic liquids for carbon dioxide capture (Mohammad Mesbah) -- Chapter 6. Carbon sequestration in alkaline soils (Qaiser Hussain) -- Chapter 7. Metal organic frameworks for carbon capture (Shanmuga Selvanathan) -- Chapter 8. Ionic liquids for carbon dioxide capture (Mohammad Reza Rahimpour) -- Chapter 9. Methods for the recovery of CO2 from chemical solvents (Mohammad Reza Rahimpour) -- Chapter 10. Cryogenic CO2 capture (Mohammad Reza Rahimpour).
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource(VIII, 282 p. 82 illus.)
    Edition: 1st ed. 2019.
    ISBN: 9783030293376
    Series Statement: Sustainable Agriculture Reviews 38
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...