GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Green chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (299 pages)
    Edition: 1st ed.
    ISBN: 9783030678845
    Series Statement: Advances in Science, Technology and Innovation Series
    DDC: 660.0286
    Language: English
    Note: Intro -- Contents -- 1 Biomass-Derived Polyurethanes for Sustainable Future -- Abstract -- 1 Introduction -- 1.1 Chemicals for Preparation of Polyurethanes -- 1.2 Importance of Green Chemicals and Synthesis Methods -- 1.3 Characteristics of Biomaterials for Polyurethanes -- 2 Bio-Oils as a Renewable Resource for Polyurethanes -- 2.1 Epoxidation and Ring-Opening Reactions -- 2.2 Hydroformation and Hydrogenation Reactions -- 2.3 Ozonolysis -- 2.4 Thiol-Ene Reaction -- 2.5 Transesterification Reaction -- 3 Terpenes as Green Starting Chemicals for Polyurethanes -- 4 Lignin for Green Polymers -- 5 Conclusion -- References -- 2 Mechanochemistry: A Power Tool for Green Synthesis -- Abstract -- 1 Introduction -- 2 History of Mechanochemistry -- 3 Principles of Mechanochemistry -- 3.1 Mechanisms and Kinetics of Mechanochemistry -- 3.2 Effects of Reaction Parameters -- 4 Mechanochemical Synthesis of Materials -- 4.1 Mechanochemical Synthesis of Co-crystals -- 4.2 Mechanochemistry in Inorganic Synthesis -- 4.3 Mechanochemistry in Organic Synthesis -- 4.4 Mechanochemistry in Metal-Organic Frameworks (MOFs) -- 4.5 Mechanochemistry in Porous Organic Materials (POMs) -- 4.6 Mechanochemical Synthesis of Polymers -- 5 Conclusions -- References -- 3 Future Trends in Green Synthesis -- Abstract -- 1 Introduction -- 2 Green Chemistry Metrics -- 2.1 Atom Economy (AE) -- 2.2 Environmental Factor (E Factor) -- 2.3 Process Mass Intensity (PMI) -- 2.4 Reaction Mass Efficiency (RME) -- 3 Application of Green Concept in Synthesis -- 3.1 Solvent-Based Organic Synthesis -- 3.2 Aqueous Medium -- 3.2.1 Micellar Media -- 3.2.2 Different Non-Aqueous Media -- Ionic Liquids -- Fluorous Media -- Supercritical Fluid -- Solvent-Free Synthesis -- 4 Future Trends -- References -- 4 Plant-Mediated Green Synthesis of Nanoparticles -- Abstract -- 1 Introduction. , 2 Methods for Metallic Nanoparticle Biosynthesis -- 3 Green Biosynthesis of Metallic NPs -- 3.1 Gold Nanoparticles -- 3.2 Platinum Nanoparticles -- 3.3 Silver Nanoparticles -- 3.4 Zinc Oxide Nanoparticles -- 3.5 Titanium Dioxide Nanoparticles -- 4 Different Parts Used for the Synthesis of Metallic Nanoparticles -- 4.1 Fruit -- 4.2 Stem -- 4.3 Seeds -- 4.4 Flowers -- 4.5 Leaves -- 5 Conclusions -- References -- 5 Green Synthesis of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- Abstract -- 1 Introduction -- 2 Advantages of Green Synthesis Methods -- 3 Green Synthesis Methods for Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 3.1 Biological Methods -- 3.1.1 Using Microorganism -- Microorganisms as Reactant -- Microorganism as Template -- 3.1.2 Using Plant -- Plant as Reactant -- Plant as Template -- 3.1.3 Using Other Green Templates -- 3.2 Physical and Chemical Methods -- 3.2.1 Green Techniques -- 3.2.2 Green Reagents -- 3.2.3 Green Solvents -- 4 Growth Mechanism of Metal and Metal Oxide HSNs -- 4.1 Biological Method -- 4.1.1 Biomolecules as Reagents -- 4.1.2 Biomolecules as Templates -- 4.2 Physical and Chemical Methods -- 5 Applications of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 5.1 Biomedical Application -- 5.2 Environmental Remediation -- 5.2.1 Wastewater Treatment -- 5.2.2 Energy Storage -- 5.2.3 Sensing -- 6 Present Challenges and Future Prospect -- Acknowledgements -- References -- 6 Bioprivileged Molecules -- Abstract -- 1 Introduction -- 2 Four Carbon 1,4-Diacids -- 2.1 Succinic Acid -- 2.2 Fumaric Acid -- 2.3 Malic Acid -- 3 Furan 2,5-Dicarboxylic Acid (FDCA) -- 4 3-Hydroxypropionic Acid (3-HPA) -- 5 Glucaric Acid -- 6 Glycerol -- 7 Aspartic Acid -- 8 Itaconic Acid -- 9 3-Hydroxybutyrolactone -- 10 Sorbitol -- 11 Xylitol -- 12 Glutamic Acid -- 13 Levulinic Acid. , 14 Emerging Molecules -- 15 Conclusion -- References -- 7 Membrane Reactors for Green Synthesis -- Abstract -- 1 Introduction -- 2 Chemical Reaction Enzymatic MR Using Supercritical CO2-IL -- 2.1 Ionic Liquid Media Effect on Free CLAB -- 2.2 Butyl Propionate Synthesis Using Active Membranes SC-CO2 and SC-CO2/IL -- 2.3 Butyl Propionate Synthesis Using Active Membranes in Hexane/IL -- 3 Mixed Ionic Electronic MR -- 3.1 Methane Flow Rate and Concentration Effects on Side II of Membrane -- 3.2 Steam Flow Effect on Side I of Membrane -- 3.3 Temperature Effect -- 4 Green Synthesis of Methanol in a Membrane Reactor -- 5 Green Fuel Energy -- 5.1 Green H2 Energy -- 5.2 Biofuel Energy -- 5.3 Green Fuel Additive -- 6 Biocatalyst Membrane Reactors -- 7 Photocatalytic Membrane Reactors -- 8 Conclusions -- References -- 8 Application of Membrane in Reaction Engineering for Green Synthesis -- Abstract -- 1 Introduction -- 2 Applications of Membrane Reactors in Reaction Engineering -- 2.1 Syngas Production -- 2.2 Hydrogen Production -- 2.3 CO2 Thermal Decomposition -- 2.4 Higher Hydrocarbon Production -- 2.5 Methane Production -- 2.6 Ammonia Production -- 3 Environmental Impacts -- 4 Conclusions and Future Recommendations -- Acknowledgements -- References -- 9 Photo-Enzymatic Green Synthesis: The Potential of Combining Photo-Catalysis and Enzymes -- Abstract -- 1 Introduction -- 2 Principle -- 3 Enzymes Involved in Light-Driven Catalysis -- 3.1 Heme-Containing Enzymes -- 3.1.1 Cytochrome P450 -- 3.1.2 Peroxidases -- 3.2 Flavin-Based Enzyme -- 3.2.1 Baeyer-Villiger Monooxygenases -- 3.2.2 Old Yellow Enzymes -- 3.3 Metal Cluster-Centered Enzyme -- 3.3.1 Hydrogenases -- 3.3.2 Carbon Monoxide Dehydrogenases -- 4 Nanoparticle-Based Activation of Enzyme -- 5 Applications in Photo-Biocatalysis -- 5.1 Isolated Enzymes/Cell Lysates -- 6 Summary and Future Scope -- References. , 10 Biomass-Derived Carbons and Their Energy Applications -- Abstract -- 1 Introduction -- 2 Types of Biomass Materials -- 2.1 Plant-Based Carbons -- 2.2 Fruit-Based Carbons -- 2.3 Animal-Based Carbons -- 2.4 Microorganism-Based Carbons -- 3 Activation of Biomass-Derived Carbons -- 3.1 Activation of Carbons -- 3.1.1 Chemical Activation of Carbons -- 3.1.2 Carbon Activation Through Physical Method -- 3.1.3 Self-activation of Carbons -- 3.2 Pyrolysis Techniques -- 3.2.1 Effect of Temperature -- 3.2.2 Effect of Residence Time -- 3.2.3 Heating Rate Effect -- 3.2.4 Size of the Particle -- 3.3 Microwave-Assisted Technique -- 3.4 Carbonization by Hydrothermal -- 3.5 Ionothermal Carbonization -- 3.6 Template Method -- 4 Energy Storage Applications of Biomass Carbons -- 4.1 Supercapacitors -- 4.2 Li/Na-Ion Batteries -- 5 Conclusion -- Acknowledgements -- References -- 11 Green Synthesis of Nanomaterials via Electrochemical Method -- Abstract -- 1 Introduction -- 2 Green Synthesis -- 2.1 Application of Biology in Green Synthesis -- 2.2 Green Synthesis Based on the Application of Solvent -- 3 Computational Data and Analysis -- 4 Electrochemical Method -- 5 Electrodeposition Method -- 5.1 Experimental Setup for Electrodeposition -- 6 Research Work: Using Green Electrochemical Methods for Nanomaterials Synthesis -- 7 Conclusion -- References -- 12 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridine Class of Bio-heterocycles: Green Avenues and Sustainable Developments -- Abstract -- 1 Introduction -- 2 Microwave-Assisted Synthesis of 2-arylimidazo[1,2-a]pyridines [Abbreviated as 2-Aryl-IPs]. -- 2.1 Synthesis of Fused Bicyclic Heteroaryl Boronates and Imidazopyridine-Quinazoline Hybrids Under MW-irradiations -- 2.2 MW-Irradiated Synthesis of IPs Using Multi-Component Strategy Under Neat Conditions. , 2.3 One-Pot, Three-Component Synthesis of 2-Phenyl-H-Imidazo[1,2-α]pyridine Under MW-Irradiations -- 2.4 Microwave-Assisted Amine-Triggered Benzannulation Strategy for the Preparation of 2,8-Diaryl-6-Aminoimidazo-[1,2-a]pyridines -- 2.5 MW-Assisted NaHCO3-catalyzed Synthesis of Imidazo[1,2-a]pyridines in PEG400 Media and Its Practical Application in the Synthesis of 2,3-Diaryl-IP Class of Bio-Heterocycles -- 2.6 MW-Irradiated, Ligand-Free, Palladium-Catalyzed, One-Pot 3-component Reaction for an Efficient Preparation of 2,3-Diarylimidazo[1,2-a]pyridines -- 2.7 MW-Assisted Water-PEG400-mediated Synthesis of 2-Phenyl-IP via Multi-Component Reaction (MCR) -- 2.8 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridines Under Neat, Catalyst-Free Conditions -- 2.9 Green Synthesis of Imidazo[1,2-a]pyridines in H2O -- 2.10 Microwave-Assisted Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]Pyridines -- 2.11 Microwave-Assisted Nano SiO2 Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]pyridines -- 2.12 Microwave-Assisted NaHCO3-Catalyzed Synthesis of 2-phenyl-IPs -- 3 Microwave-Assisted Synthesis of 3-amino-2-arylimidazo[1,2-a]pyridines [3-amino-2-aryl-IPs] -- 3.1 Microwave-Irradiated Synthesis of 3-aminoimidazo[1,2-a]pyridines via Fluorous Multi-component Pathway -- 3.2 MW-Irradiated Synthetic Protocol for 3-aminoimidazo[1,2-a]pyridines via MCR Pathway -- 3.3 MW-Assisted Sequential Ugi/Strecker Reactions Involving 3-Center-4-Component and 3-Center-5-Component MCR Strategy -- 3.4 One-Pot, 4-component Cyclization/Suzuki Coupling Leading to the Rapid Formation of 2,6-Disubstituted-3-Amino-IPs Under Microwave Irradiations -- 3.5 ZnCl2-catalyzed MCR of 3-aminoimidazo[1,2-a]pyridines Using MW Conditions -- 3.6 Microwave-Promoted Preparation of N-(3-arylmethyl-2-oxo-2,3-dihydroimidazo[1,2-a]pyridin-3-Yl)Benzamides. , 3.7 MW-Assisted Multi-component Neat Synthesis of Benzimidazolyl-Imidazo[1,2-a]pyridines.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Renewable energy sources. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (354 pages)
    Edition: 1st ed.
    ISBN: 9783030728779
    Series Statement: Advances in Science, Technology and Innovation Series
    DDC: 628.532
    Language: English
    Note: Intro -- Contents -- 1 Chemical Valorization of CO2 -- Abstract -- 1 Introduction -- 2 CO2-Derived Fuels and Chemicals -- 2.1 Methane -- 2.2 Methanol -- 2.3 Dimethyl Ether -- 2.4 Formic Acid -- 2.5 Ethanol -- 2.6 CO2-Fischer-Tropsch Liquid Fuels -- 2.7 Carbon Monoxide-Syngas -- 3 CO2 Chemically Derived Materials -- 3.1 Polymers -- 3.2 CO2-Derived Building Materials -- 4 Conclusions -- References -- 2 Progress in Catalysts for CO2 Reforming -- Abstract -- 1 Introduction -- 2 Technologies for Capturing and Storing Carbon Dioxide -- 3 Technologies for Using Carbon Dioxide -- 4 Methane Dry Reforming Process -- 4.1 Progress in Catalysts for Methane Dry Reforming (1928-1989) -- 4.2 Progress in Catalysts for Methane Dry Reforming (1990-1999) -- 4.3 Progress in Catalysts for Methane Dry Reforming (2000-2009) -- 4.4 Progress in Catalysts for Methane Dry Reforming (2010-2019) -- 4.5 Current Status in the Catalysts for Methane Dry Reforming -- 5 Dry Reforming of Other Compounds -- 6 Use of Steam or Oxygen in Dry Reforming of Methane and Other Compounds -- 7 Solid Oxide Fuel Cells Fueled with Biogas -- 8 Commercialization of Dry Reforming Process -- 9 Conclusions -- References -- 3 Fuel Generation from CO2 -- Abstract -- 1 Introduction -- 2 Approaches for Directly Converting CO2 to Fuels -- 2.1 Pure CO2 Decomposition Technology -- 2.2 Reagent-Based CO2 Conversion Technology -- 2.2.1 Dry Deformation of Methane Technology -- 2.2.2 Catalytic Hydrogenation of CO2 -- 3 Biological CO2 Fixation for Fuels -- 3.1 Thermochemical Conversion -- 3.1.1 Torrefaction -- 3.1.2 Pyrolysis -- 3.1.3 Thermochemical Liquefaction -- 3.1.4 Gasification -- 3.1.5 Direct Combustion -- 3.2 Biochemical Conversion -- 3.2.1 Biodiesel -- 3.2.2 Bioethanol -- 3.2.3 Biomethane -- 3.2.4 Biohydrogen -- 3.2.5 Bioelectricity -- 3.2.6 Volatile Organic Compounds. , 4 Conclusion and Future Perspectives -- References -- 4 Thermodynamics of CO2 Conversion -- Abstract -- 1 Introduction -- 2 Carbon Dioxide Capture -- 3 Carbon Dioxide Utilisations -- 4 Thermodynamic Considerations -- 5 Thermodynamics of CO2 -- 5.1 The Thermodynamic Attainable Region (AR) -- 5.2 Using Hess's Law to Transform the Extents to G-H AR @ 25˚C -- 5.3 Increasing Temperature on G-H AR -- 6 Conclusion -- Acknowledgements -- References -- 5 Enzymatic CO2 Conversion -- Abstract -- 1 Introduction -- 1.1 CO2 as a Greenhouse Gas -- 1.2 Carbon Capture, Storage, and Utilization -- 1.3 CO2 as a Chemical Feedstock -- 1.4 CO2 Conversion with Enzymes -- 2 Natural Conversion of CO2 in Cells -- 3 Enzymatic Conversion of CO2 in Cells -- 3.1 Conversion of CO2 by a Single Enzyme (in vitro) -- 3.1.1 Formate Dehydrogenase -- 3.1.2 Carbonic Anhydrase -- 3.1.3 Carbon Monoxide Dehydrogenase -- 3.1.4 Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (RuBisCO) -- 3.2 Conversion of CO2 by a Multi-Enzyme Cascade in vitro -- 3.3 Other Ways (Photocatalytic CO2 Methanation) -- 4 Industrial Applications -- 4.1 Alcohols -- 4.2 Organic Acids -- 4.3 Terpenoids -- 4.4 Fatty Acids -- 4.5 Polyhydroxyalkanoates -- 4.6 Calcium Carbonate -- 5 Summary and Future Prospects -- References -- 6 Electrochemical CO2 Conversion -- Abstract -- 1 Introduction -- 2 Electrochemical CO2 Conversion -- 2.1 Fundamentals of the Process -- 2.2 Variants of Electrochemical Conversion of CO2 -- 2.2.1 Aqueous Electrolytes -- 2.2.2 Non-Aqueous Electrolytes -- 2.2.3 Solid Oxide Electrolytes -- 2.2.4 Molten Salt Electrolytes -- 3 Electrochemical CO2 Conversion from Molten Salts -- 3.1 Present State of Electrochemical Reduction of CO2in Molten Salts for the Production of Solid-Phase Carbonaceous Nanomaterials -- 3.2 Direct Electrochemical Reduction of CO2 in Chloride Melts. , 3.3 Indirect Electrochemical Reduction of CO2 in Molten Salts -- 3.4 The Mechanisms of Electrode Reactions Occurring at the Cathode and Anode -- 3.5 Prospects for CO2 Conversion in Molten Salts -- 4 Conclusions -- References -- 7 Supercritical Carbon Dioxide Mediated Organic Transformations -- Abstract -- 1 Introduction -- 2 Applications of Supercritical Carbon Dioxide -- 2.1 Hydrogenation Reactions -- 2.2 Asymmetric Hydrogenation Reactions -- 2.3 Diels-Alder Reaction -- 2.4 Coupling Reaction -- 2.5 Oxidation Reaction -- 2.6 Baeyer-Villiger Oxidation Reaction -- 2.7 Iodination Reaction -- 2.8 Polymerization Reaction -- 2.9 Carbonylation Reaction -- 2.9.1 Acetalization Reaction -- 2.9.2 Olefin Metathesis Reaction -- 2.9.3 Synthesis of heterocycles -- Synthesis of α-alkylidene Cyclic Carbonates -- Synthesis of 4-Methyleneoxazolidin-2-Ones -- Synthesis of 5-Alkylidene-1, 3-Oxazolidin-2-Ones -- Synthesis of 6-Phenyl-3a, 4-Dihydro-1H-Cyclopenta[C]furan-5(3H)-One -- Synthesis of 3, 4, 5, 6-Tetraethyl-2H-Pyran-2-One -- 3 Conclusions -- Acknowledgements -- References -- 8 Theoretical Approaches to CO2 Transformations -- Abstract -- 1 Carbon Dioxide Properties -- 2 CO2 Transformation as an Undeniable Necessity -- 3 CO2 Activation -- 3.1 Methodologies of CO2 Activation -- 4 Theoretical Insight of CO2 Transformation -- 4.1 The Theoretical Approach in CO2 Conversion to Value-Added Chemicals -- 4.1.1 Carbon Monoxide -- 4.1.2 Methane -- 4.1.3 Methanol -- 4.1.4 Formic Acid -- 4.1.5 Heterocycles -- Cyclic Carbonates -- Cyclic Carbamate -- Quiznazoline-2,4(1H,3H)-Dione -- 4.1.6 Summary and Outlook -- 5 Theoretical Designing of Novel Catalysts Based on DFT Studies -- 5.1 Theoretical Designing: Problems and Opportunities -- 6 Conclusion -- References -- 9 Carbon Dioxide Conversion Methods -- Abstract -- 1 Introduction -- 2 Molecular Structure of CO2. , 3 Thermo-Kinetics of CO2 Conversion -- 4 CO2 Conversion Methods and Products -- 4.1 Fischer-Tropsch Gas-to-Liquid (GTL) -- 4.2 Mineralization -- 4.3 Chemical Looping Dry Reforming -- 4.4 Enzymatic Conversion -- 4.5 Photocatalytic and Photo-Electrochemical Conversion -- 4.6 Thermo-Chemical Conversion -- 4.7 Hydrogenation -- 4.8 Reforming -- 5 Economic Assessment of CO2Alteration to Valuable Products -- 5.1 Syngas -- 5.2 Methanol -- 5.3 Formic Acid -- 5.4 Urea -- 5.5 Dimethyl Carbonate (DMC) -- 6 Conclusions and Future Perspective -- Acknowledgements -- References -- 10 Closing the Carbon Cycle -- Abstract -- 1 Introduction -- 2 Methods to Capture CO2 -- 3 CO2 Capture Technologies -- 4 CO2 Capture from the Air -- 5 Biomass and Waste-Based Chemicals -- 6 Advantages of Biomass-Based Chemicals -- 7 Replacement of Carbon-Based Energy Resources -- 8 Biomass Energy -- 9 Wind Energy -- 10 Solar Energy -- 11 Ocean Energy -- 12 Geothermal Energy -- 13 Hydrothermal Energy -- 14 Conclusions -- References -- 11 Carbon Dioxide Utilization to Energy and Fuel: Hydrothermal CO2 Conversion -- Abstract -- 1 Introduction -- 2 Hydrothermal CO2 Conversion -- 2.1 Metals and Catalysts as Reductant -- 2.2 Organic Wastes as Reductant -- 2.3 Inorganic Wastes as Reductant -- 2.4 Biomass as Reductant -- 3 Conclusion -- References -- 12 Ethylenediamine-Carbonic Anhydrase Complex for CO2 Sequestration -- 1 Introduction -- 2 An Overview of Carbonic Anhydrase (CA) -- 3 Mechanism of Action for Biocarbonate Formation -- 4 Historical Background of Carbonic Anhydrase -- 5 Sources of Carbonic Anhydrase -- 6 Carbonic Anhydrase in Microorganism -- 6.1 Micrococcus Lylae, Micrococcus Luteus, and Pseudomonas Fragi -- 6.2 Bacillus Subtilis and Citrobacter Freundii -- 6.3 Neisseria Gonorrhoeae -- 6.4 Helicobacter Pylori -- 7 Plant Carbonic Anhydrase -- 8 Overview of CO2. , 9 Sources of Carbon Dioxide (CO2) -- 10 Effect of Carbon Dioxide (CO2) -- 11 Carbon Dioxide Capturing -- 12 Carbon Dioxide (CO2) Sequestration -- 13 Carbon Dioxide (CO2) Sequestration by Carbonic Anhydrase -- 14 Separation System for CO2 Sequestration -- 15 Cryogenic Separation -- 16 Membrane Separation -- 17 Absorption -- 18 Adsorption -- 19 Bioreactors for CO2 Sequestration -- 20 Carbonic Anhydrase Immobilization -- 21 Ethylenediamine for Carbon Dioxide (CO2) Capturing -- 22 CO2 Capturing and Sequestration with Ethylenediamine-Carbonic Anhydrase Complex -- 23 CO2 Capturing and Sequestration Design and Optimization: Challenges and Future Prospects -- 24 Conclusion -- References -- 13 Green Pathway of CO2 Capture -- Abstract -- 1 Introduction -- 2 Molecular Structure of Carbon Dioxide -- 3 CO2 Capture System -- 3.1 Post-Combustion System -- 3.2 Pre-Combustion System -- 3.3 Oxy-Fuel Combustion System -- 4 Absorption Technology -- 4.1 Green Absorption with Ionic Liquids -- 4.1.1 Properties and Uses of Ionic Liquids -- 4.1.2 CO2 Solubility in PILs -- 4.1.3 CO2 Absorption in PILs with Carboxylate Anion -- 4.2 Reaction Mechanism Involved in CO2-Absorption -- 5 Adsorption Technology -- 5.1 Organic Adsorbents -- 5.1.1 Activated Charcoal -- 5.1.2 Biochar -- 5.1.3 Metal-Organic Frameworks (MOFs) -- 5.2 Other CO2 Adsorbents -- 5.2.1 Metal Oxide-Based Absorbents -- 5.2.2 Zeolites -- 5.3 Biological Processes of CO2Sequestration -- 5.3.1 Carbon Utilization by Forest and Agricultural Management -- 5.3.2 Ocean Fertilization -- 5.3.3 CO2 Capture by Microalgae -- 5.4 Electrochemical Ways for CO2 Capture -- 6 Conclusion -- References -- 14 Carbon Derivatives from CO2 -- Abstract -- 1 Introduction -- 2 Artificial Photoreduction -- 3 Electrochemical Reduction -- 4 Hydrogenation -- 5 Synthesis of Organic Carbonates -- 6 Reforming. , 7 Photocatalytic Reduction of CO2 with Water.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Organometallic polymers. ; Chemical reactions. ; Organometallic chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (501 pages)
    Edition: 1st ed.
    ISBN: 9780128232620
    DDC: 547.05
    Language: English
    Note: Front Cover -- Metal-Organic Frameworks for Chemical Reactions -- Copyright Page -- Contents -- List of contributors -- 1 Metal-organic frameworks and their composites -- 1.1 Introduction -- 1.2 Metal-organic framework composites -- 1.2.1 Processing of metal-organic framework composites -- 1.2.2 Types of metal-organic framework composites -- 1.2.2.1 Metal-organic framework-polymer composites -- 1.2.2.2 Metal-organic framework-quantum dot composites -- 1.2.2.3 Metal-organic framework-metal nanoparticle composites -- 1.2.2.4 Metal-organic framework-graphene oxide composites -- 1.2.2.5 Metal-organic framework-polyoxometalate composites -- 1.2.2.6 Metal-organic framework-enzyme composites -- 1.2.2.7 Metal-organic framework-cellulose composites -- 1.2.2.8 Metal-organic framework-silica composites -- 1.2.2.9 Metal-organic framework-activated carbon composites -- 1.2.2.10 Metal-organic framework-aluminum composites -- 1.2.2.11 Metal-organic framework-molecular species composites -- 1.2.2.12 Metal-organic framework-hybrid composites -- 1.3 Characterization of metal-organic framework composites -- 1.3.1 X-ray diffraction analysis -- 1.3.2 X-ray photoelectron spectroscopy -- 1.3.3 Fourier-transform infrared spectroscopy -- 1.3.4 Scanning electron microscopy analysis -- 1.4 Conclusion -- References -- 2 Metal-organic framework for batteries and supercapacitors -- 2.1 Introduction -- 2.2 Metal-organic frameworks -- 2.3 Metal-organic frameworks for batteries -- 2.3.1 Lithium-ion batteries -- 2.3.2 Sodium-ion batteries -- 2.3.3 Li-O2 batteries -- 2.3.4 Li-S batteries -- 2.4 Metal-organic frameworks for supercapacitors -- 2.4.1 Metallic oxides/sulfides for supercapacitors -- 2.4.2 Carbon for supercapacitors -- 2.5 Conclusion -- References -- 3 Titanium-based metal-organic frameworks for photocatalytic applications -- 3.1 Introduction -- 3.1.1 The Ti-chemistry. , 3.2 Preparation of titanium-based metal-organic frameworks and the selection of precursors -- 3.2.1 Direct synthesis -- 3.2.2 Solvothermal synthesis -- 3.2.3 Ultrasonic and microwave-assisted synthesis -- 3.2.4 The method of coordination-covalent combination -- 3.2.5 Method of postsynthetic cation exchange -- 3.2.6 Vapor-assisted crystallization method -- 3.2.7 Synthesis of titanium-based metal-organic framework composites -- 3.3 The structure of titanium-based metal-organic frameworks -- 3.3.1 Photocatalytic application of titanium-based metal-organic frameworks -- 3.4 Photocatalytic oxidation reaction -- 3.4.1 Titanium-based metal-organic framework composites -- 3.4.2 Photocatalytic NO oxidation and antibacterial activity -- 3.4.3 Photocatalytic CO2 reduction -- 3.4.4 Photocatalytic H2 generation from water splitting -- 3.4.5 Photocatalytic degradation of organic pollutants -- 3.4.6 Photocatalytic polymerization -- 3.4.7 Photocatalytic deoximation reaction -- 3.4.8 Photocatalytic sensors -- 3.5 Conclusion -- References -- 4 Electrochemical aspects of metal-organic frameworks -- 4.1 Introduction -- 4.2 Electrochemical synthesis of metal-organic frameworks -- 4.2.1 Direct electrosynthesis of metal-organic frameworks -- 4.2.1.1 Anodic dissolution -- 4.2.1.2 Reductive deprotonation -- 4.2.2 Indirect electrosynthesis of metal-organic frameworks -- 4.2.2.1 Anchoring of a linker -- 4.2.2.2 Galvanic displacement -- 4.2.2.3 Electrophoretic deposition -- 4.2.2.4 Self-templated synthesis from metal oxide/hydroxide nanostructures -- 4.3 Electrochemical applications of metal-organic frameworks -- 4.3.1 Battery applications of various metal-organic frameworks -- 4.3.1.1 Metal-organic frameworks for Li-ion batteries -- 4.3.1.2 Metal-organic frameworks for Li-S batteries and other batteries -- 4.3.2 Supercapacitors applications of various metal-organic frameworks. , 4.3.3 Electrocatalysis applications of various metal-organic frameworks -- 4.3.4 Electrochemical sensing applications of various metal-organic frameworks -- 4.3.5 Other electrochemical applications of metal-organic frameworks -- 4.4 Conclusion -- Acknowledgment -- References -- 5 Permeable metal-organic frameworks for fuel (gas) storage applications -- 5.1 Introduction -- 5.2 Concept of porosity in fuel storage -- 5.3 Permeable metal-organic frameworks for H2 storage application -- 5.4 Permeable metal-organic frameworks for CH4 storage applications -- 5.5 Permeable metal-organic frameworks for C2H2 storage applications -- 5.6 Permeable metal-organic frameworks for CO2 storage applications -- 5.7 Conclusion -- Acknowledgment -- References -- 6 Excessively paramagnetic metal organic framework nanocomposites -- 6.1 Introduction -- 6.2 Discussion and applications -- 6.3 Conclusion -- References -- 7 Expanding energy prospects of metal-organic frameworks -- 7.1 Introduction -- 7.2 Metal-organic frameworks in Li-ion batteries -- 7.3 Applications of metal-organic frameworks as electrode material for lithium-ion batteries -- 7.4 Applications of high conductive metal-organic frameworks -- 7.5 Utilization of metal-organic frameworks as electric double-layer capacitors (supercapacitors) -- 7.5.1 Applications of optimizing the surface area -- 7.6 Utilization of lithium-oxygen as separators -- 7.7 Utilization of solid-state electrolytes -- 7.8 Applications of electrode-electrolyte alliances -- 7.9 Fuel cell applications -- 7.10 Electrocatalytic applications -- 7.11 Conclusion -- References -- 8 Metal-organic framework-based materials and renewable energy -- 8.1 Introduction -- 8.2 0D-metal-organic framework-based materials-nanoparticles -- 8.2.1 Multishell 0D-metal-organic framework-based materials-nanoparticles. , 8.2.2 Hollow 0D-metal-organic framework-based materials-nanoparticles -- 8.3 1D-metal-organic framework-based materials-nanoparticles -- 8.3.1 Nanotube 1D-metal-organic framework-based materials-nanoparticles -- 8.3.2 Nanorod 1D-metal-organic framework-based materials-nanoparticles -- 8.3.3 Nanowire 1D-metal-organic framework-based materials-nanoparticles -- 8.4 2D-metal-organic framework-based materials-nanoparticles -- 8.4.1 Nanosheet 2D-metal-organic framework-based materials-nanoparticles -- 8.4.2 Holey 2D-metal-organic framework-based materials-nanoparticles -- 8.5 3D-metal-organic framework-based materials-nanoparticles -- 8.5.1 Array 3D-metal-organic framework-based materials-nanoparticles -- 8.5.2 Hierarchical 3D-metal-organic framework-based materials-nanoparticles -- 8.5.3 Superstructured 3D-metal-organic framework-based materials-nanoparticles -- 8.6 Conclusion -- Acknowledgments -- References -- 9 Applications of metal-organic frameworks in analytical chemistry -- 9.1 Introduction -- 9.2 Desirable characteristics of MOFs for analytical chemistry applications -- 9.3 Recent applications -- 9.3.1 Recent applications in sample preparation -- 9.3.1.1 Solid-phase extraction -- 9.3.1.2 Dispersive solid-phase extraction -- 9.3.1.3 Solid-phase microextraction -- 9.3.1.4 Matrix solid-phase dispersion -- 9.3.1.5 Stir bar sorptive extraction -- 9.3.2 Recent applications in chromatography -- 9.3.2.1 Gas chromatography -- 9.3.2.2 Liquid chromatography -- 9.3.2.3 Electrophoretic separations -- 9.3.3 Recent applications in sensor development -- 9.3.3.1 Electrochemical sensors -- 9.3.4 Electroluminescent/optical sensors -- 9.4 Conclusion and future remarks -- Acknowledgement -- References -- 10 Modified metal-organic frameworks as photocatalysts -- 10.1 Introduction -- 10.2 Structure, merits, and strategies -- 10.3 Metal-organic framework modification. , 10.3.1 Ligands and clusters -- 10.3.2 Metals -- 10.3.3 Semiconductors -- 10.3.4 Dyes -- 10.3.5 Composites/hybrids -- 10.4 Applications -- 10.4.1 Hydrogen production -- 10.4.2 Water splitting -- 10.4.3 Other applications -- 10.5 Conclusion and outlook -- Acknowledgments -- Abbreviations -- References -- 11 The sensing applications of metal-organic frameworks and their basic features affecting the fate of detection -- 11.1 Introduction -- 11.2 Type of metal-organic frameworks -- 11.2.1 MOF-5 -- 11.2.2 HKUST-1 -- 11.2.3 UiO -- 11.2.4 ZIF-8 and ZIF-67 -- 11.2.5 MOF-76 -- 11.2.6 MIL-101 -- 11.3 Pore diameter -- 11.4 Pore morphology -- 11.5 Combination with different nanoparticles -- 11.6 The sensing applications carried out with metal-organic frameworks -- 11.6.1 Gas-sensing applications -- 11.6.2 Metal ion sensing applications -- 11.6.3 Hydrophobic molecule sensing applications -- 11.7 Conclusion -- References -- 12 Thermomechanical and anticorrosion characteristics of metal-organic frameworks -- 12.1 Introduction -- 12.2 Design of metal-organic frameworks -- 12.2.1 Key structures in metal-organic frameworks -- 12.2.2 Dimensionality of metal-organic frameworks -- 12.2.3 Methods for the construction of metal-organic framework structures -- 12.2.3.1 Hydro(solvo)thermal method -- 12.2.3.2 Microwave and ultrasonic methods -- 12.2.3.3 Electrochemical production -- 12.2.3.4 Diffusion method -- 12.2.3.5 Mechanochemical synthesis -- 12.2.3.6 Solvent evaporation and isothermal synthesis -- 12.3 Stability of metal-organic frameworks -- 12.3.1 Various aspects regarding the stability of metal-organic frameworks -- 12.3.1.1 Thermal stability of metal-organic frameworks -- 12.3.1.2 Mechanical stability -- 12.3.1.3 Chemical stability -- 12.3.1.4 Water stability -- 12.4 Application -- 12.4.1 Anticorrosion properties of metal-organic frameworks. , 12.4.1.1 Metal-organic frameworks as a corrosion inhibitors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Waste products as fuel. ; Biomass energy. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (540 pages)
    Edition: 1st ed.
    ISBN: 9780128235270
    Language: English
    Note: Front Cover -- Half Title -- Title -- Copyright -- Contents -- Contributors -- Chapter 1 Waste to energy: an overview by global perspective -- 1.1 Introduction -- 1.2 Potential waste biomass -- 1.2.1 Agricultural and forest residue -- 1.2.2 Industrial waste biomass -- 1.2.3 Municipal waste biomass -- 1.2.4 Micro- and macroalgae waste biomass -- 1.3 Biofuels from waste -- 1.3.1 Biodiesel -- 1.3.2 Bioethanol fermentation -- 1.3.3 Bio-oil and biochar -- 1.3.4 Biomethane and biohydrogen -- 1.3.5 Syngas and bioelectricity -- 1.4 Socioeconomic perspective -- 1.5 Environmental perspective -- 1.6 Integrated approaches of biofuel from waste -- 1.7 Conclusion -- References -- Chapter 2 Potential of advanced photocatalytic technology for biodiesel production from waste oil -- 2.1 Introduction -- 2.1.1 Biodiesel-strength and weakness -- 2.1.2 Biodiesel as an alternative fuel -- 2.1.3 WCO as a feedstock for biodiesel production -- 2.2 Reaction process to produce biodiesel -- 2.2.1 Microemulsion technique -- 2.2.2 Direct use and blending technique -- 2.2.3 Pyrolysis of oil -- 2.2.4 Transesterification process -- 2.2.5 Esterification process -- 2.3 Catalyst for biodiesel production -- 2.4 Photocatalyst -- 2.4.1 Mechanism of photocatalysis -- 2.4.2 Important circumstances influence photocatalyst performance -- 2.4.3 Synthesis of photocatalysts -- 2.5 Fundamental of photocatalyst in biodiesel production -- 2.5.1 TiO2 as a photocatalyst in biodiesel production -- 2.5.2 Zinc oxide \(ZnO\) nanocatalyst as heterogeneous photocatalyst -- 2.6 Parameters affecting on photocatalytic esterification -- 2.6.1 Effect of alcohol to oil ratio -- 2.6.2 Effect of catalyst loading -- 2.6.3 Effect of stirring speed -- 2.6.4 Effect of UV irradiation time and lamp power -- 2.7 Conclusion -- Acknowledgments -- References. , Chapter 3 Biofuel production from food waste biomass and application of machine learning for process management -- 3.1 Introduction -- 3.2 Growing concern for food loss waste (FLW) -- 3.3 Conversion techniques -- 3.3.1 Biochemical technology -- 3.4 Thermochemical technology -- 3.4.1 Gasification -- 3.4.2 Pyrolysis -- 3.4.3 Liquefaction -- 3.5 Sustainable management of FW with machine learning -- 3.5.1 Machine learning overview for FW and biofuel -- 3.6 Prediction of energy demand and biofuel production from FW -- 3.6.1 Life cycle of machine learning-based energy demand and biofuel production -- 3.7 Conclusion -- References -- Chapter 4 Biological conversion of lignocellulosic waste in the renewable energy -- 4.1 Introduction -- 4.2 Lignocellulosic biomass and technical benefits -- 4.3 The role of bacteria in the decomposition of plant biomass and the production of RE -- 4.4 The future of RE and the challenges -- 4.5 Conclusion -- References -- Chapter 5 The potential of sustainable biogas production from animal waste -- 5.1 Introduction -- 5.2 Biogas components -- 5.3 Factors affecting biogas production -- 5.4 Anaerobic fermentation -- 5.4.1 Bacteria -- 5.4.2 Temperature -- 5.4.3 pH -- 5.4.4 Carbon to nitrogen ratio -- 5.4.5 Concentration of the solid in the feeding solution -- 5.4.6 Feeding rates of organic matter (degree of loading) -- 5.4.7 Time of solution remaining in the fermenter -- 5.4.8 Toxic substances in nutrition -- 5.4.9 Use prefixes -- 5.4.10 Flipping inside the fermenter -- 5.5 Environmental and economic benefits from biogas generation -- 5.6 The properties of the different gases compared to the biogas -- 5.7 Prospects for the development of biogas production technology and current problems -- 5.8 Conclusion -- References. , Chapter 6 Current and future trends in food waste valorization for the production of chemicals, materials, and fuels by advanced technology to convert food wastes into fuels and chemicals -- 6.1 Introduction -- 6.2 Food valorization to produce chemicals -- 6.2.1 Multitudinous valorization methods for chemical production -- 6.3 Transformation of food waste into bioenergy -- 6.3.1 Biogas formation -- 6.3.2 Biohydrogen production -- 6.3.3 Distinctive techniques for biofuel production -- 6.4 Conclusion -- References -- Chapter 7 Biochemical conversion of lignocellulosic waste into renewable energy -- 7.1 Introduction -- 7.2 Structural and functional attributes of LCMs -- 7.2.1 Socioeconomic aspects of LCMs -- 7.2.2 Biorefinery-based bioeconomy-considerations -- 7.2.3 Biotransformation of LCMs -- 7.2.4 Enzyme-based pretreatment of LCMs -- 7.2.5 Chemical-based pretreatment of LCMs -- 7.3 Biofuels generation -- 7.4 Conclusion and perspectives -- References -- Chapter 8 Recent trends on the food wastes valorization to value-added commodities -- 8.1 Introduction-food waste and its global scenario -- 8.2 FW hierarchy -- 8.3 FW-generating sectors -- 8.4 FW valorization to worth-added commodities -- 8.5 Biotransformation of FWs -- 8.6 Value-added components recovery -- 8.6.1 Recovery of organic acids -- 8.6.2 Nutraceuticals -- 8.6.3 Nanoparticles -- 8.6.4 Dietary fiber -- 8.7 Production of biomaterials and biofertilizer -- 8.7.1 Biopolymers -- 8.7.2 Single-cell protein (microbial biomass) -- 8.7.3 Bio-based colorants -- 8.7.4 Bioadsorbent -- 8.7.5 Biofertilizer -- 8.7.6 Bio-based high value-added products -- 8.7.7 Enzymes production from FW and their application -- 8.8 Conclusion and recommendations -- References -- Chapter 9 Thermochemical conversion methods of bio-derived lignocellulosic waste molecules into renewable fuels -- 9.1 Introduction. , 9.2 Lignocellulosic biomass -- 9.2.1 Sources of lignocellulosic biomass -- 9.2.2 Properties and composition of lignocellulosic biomass -- 9.3 Pretreatment techniques -- 9.3.1 Physical pretreatment technique -- 9.3.2 Chemical pretreatment technique -- 9.3.3 Physiochemical pretreatment technique -- 9.3.4 Biological pretreatment technique -- 9.3.5 Combination pretreatment technique -- 9.4 Thermochemical conversion of lignocellulosic biomass -- 9.4.1 Thermochemical lignocellulosic biorefineries -- 9.4.2 Biochemical refineries for the conversion of lignocellulosic biomass -- 9.4.3 Hybrid biorefineries -- 9.5 Conclusion -- References -- Chapter 10 Biodiesel production from waste cooking oil using ionic liquids as catalyst -- 10.1 Introduction -- 10.2 Recent trends -- 10.3 Waste cooking oil -- 10.4 Transesterification of WCO -- 10.5 Experimental analysis -- 10.5.1 Catalytic ethanolysis of waste cooking soybean oil using the IL [HMim][HSO4] -- 10.5.2 Preparation of a supported acidic IL on silica-gel and its application to the synthesis of biodiesel from WCO -- 10.5.3 Improving biodiesel yields from WCO using ILs as catalysts with a microwave heating system -- 10.5.4 Biodiesel production from WCO by acidic IL as a catalyst -- 10.5.5 Biodiesel production process by using new functionalized ILs as catalysts -- 10.6 Conclusion -- References -- Chapter 11 Valorization of waste cooking oil (WCO) into biodiesel using acoustic and hydrodynamic cavitation -- 11.1 Introduction -- 11.2 Biodiesel synthesis -- 11.2.1 Feedstock used for biodiesel synthesis -- 11.2.2 FFAs and their effect on biodiesel synthesis -- 11.2.3 Types of catalysts and its significance -- 11.3 Cavitation -- 11.3.1 Acoustic cavitation -- 11.3.2 HC and its mechanism -- 11.4 Review of current status of utilization of WCO for synthesis of biodiesel -- 11.4.1 Synthesis of biodiesel using AC. , 11.4.2 Synthesis of biodiesel using HC -- 11.5 Conclusion -- References -- Chapter 12 Production of biochar from renewable resources -- 12.1 Biochar definition -- 12.2 Biochar applications -- 12.3 Biochar production -- 12.3.1 Pyrolysis -- 12.3.2 Gasification -- 12.3.3 Hydrothermal carbonization -- 12.3.4 Other processes -- 12.4 Factors affecting biochar production -- 12.4.1 Feedstocks of biochar -- 12.4.2 Thermochemical temperature -- 12.5 Mechanism of biochar production -- 12.6 Conclusions -- References -- Chapter 13 Microbial fuel cell technology for bio-electrochemical conversion of waste to energy -- 13.1 Introduction -- 13.2 MFC technology -- 13.2.1 Technological background, performance indicators, and operating parameters -- 13.3 Role of microbial species and mechanism of electron transport in MFC -- 13.3.1 Substrate composition in MFC -- 13.3.2 Electrode material -- 13.3.3 MFC design and architecture -- 13.4 Bioenergy production from MFC -- 13.4.1 Simple substrate molecules for electricity generation -- 13.4.2 Complex wastewater used for electricity generation -- 13.4.3 Pitfalls and future prospects -- 13.5 Conclusion -- References -- Chapter 14 Case study of nonrefined mustard oil for possible biodiesel extraction: feasibility analysis -- 14.1 Introduction -- 14.2 Materials and methods -- 14.2.1 Catalyst preparation -- 14.2.2 Collection of nonrefined mustard oil -- 14.2.3 Design of experiment using Taguchi -- 14.2.4 Transesterification -- 14.2.5 Characterization of catalyst -- 14.3 Results and discussion -- 14.3.1 Characterization of catalyst -- 14.3.2 ANOVA and RSM -- 14.3.3 Effect of operating parameters -- 14.4 Conclusion -- References -- Chapter 15 Waste oil to biodiesel -- 15.1 Second-generation feedstock for biodiesel production -- 15.1.1 Used cooking oil -- 15.1.2 Grease -- 15.1.3 Animal fat -- 15.1.4 Soapstock -- 15.1.5 Nonedible oils. , 15.2 Conclusion.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Biopolymers. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (319 pages)
    Edition: 1st ed.
    ISBN: 9783030403010
    DDC: 572.33
    Language: English
    Note: Intro -- Preface -- Contents -- Editors and Contributors -- Surface Modification Techniques for the Preparation of Different Novel Biofibers for Composites -- 1 Introduction -- 2 Physical Treatment Techniques -- 3 Plasma Treatment -- 4 Corona Treatment -- 5 Ultrasound Treatment -- 6 Ultraviolet Treatment -- 7 Chemical Treatment Techniques -- 8 Alkaline Treatment -- 9 Silane Treatment -- 10 Acetylation Treatment -- 11 Benzoylation Treatment -- 12 Acrylation and Acrylonitrile Grafting -- 13 Maleated Coupling Agents -- 14 Permanganate Treatment -- 15 Peroxide Treatment -- 16 Isocyanate Treatment -- 17 Other Treatments -- 18 Concluding Remarks -- References -- Structure and Surface Morphology Techniques for Biopolymers -- 1 Introduction -- 2 X-Ray Diffraction (XRD) -- 3 Nuclear Magnetic Resonance Spectroscopy (NMR) -- 4 Atomic Force Microscopy (AFM) -- 5 Transmission Electron Microscopy (TEM) -- 6 Optical Microscopy -- 7 Scanning Electron Microscopy (SEM) -- 8 Fourier Transform Infrared Spectroscopy -- 9 Summary -- References -- Properties of Cellulose Based Bio-fibres Reinforced Polymer Composites -- 1 Introduction -- 2 Properties of CFRCs -- 2.1 Mechanical Properties -- 2.2 Fatigue Properties -- 2.3 Interfacial Properties -- 2.4 Thermal Properties -- 2.5 Sound Absorption Properties -- 2.6 Fourier Transform Infra-Red (FTIR) Spectroscopy Analysis -- 2.7 X-Ray Diffraction (XRD) Analysis -- 2.8 Water Absorption Characteristics -- 2.9 Wear Behavior -- 2.10 Morphological Properties -- 3 Conclusion -- References -- Biocomposites from Biofibers and Biopolymers -- 1 Polylactic Acid as Matrix -- 2 Biobased Resins as Matrix -- 2.1 Bioepoxies -- 2.2 Vegetable Oil Based Resins -- 2.3 Polysaccharides and Lignocelluloses as Resins -- 2.4 Proteins as Resins -- 2.5 Ionic Liquid Processed Biocomposites -- 3 Performance of Biodegradable Resins and Composites. , 4 Environmental Degradation -- 5 Biodegradability -- References -- Influence of Fillers on the Thermal and Mechanical Properties of Biocomposites: An Overview -- 1 Introduction -- 2 Overview of Fillers Used in Biocomposites -- 3 Classification of Fillers -- 4 Inorganic Fillers -- 5 Organic Fillers -- 6 Factors Influencing the Properties of the Fillers -- 7 Influence of Fillers on the Thermal Properties of Biocomposites -- 8 Effect of Filler Loading -- 9 Effect of Chemical Modification -- 10 Effect of Filler Size -- 11 Influence of Fillers on the Mechanical Properties of Biocomposites -- 12 Effect of Filler Size and Filler Loading -- 13 Effect of Chemical Modification -- 14 Aging Effects -- 15 Challenges, Opportunities, Current Developments, and Applications -- 16 Concluding Remarks -- References -- Bionanocomposites from Biofibers and Biopolymers -- 1 Introduction -- 2 Biofibers and Biopolymers-Building Blocks of Bionanocomposites -- 2.1 Cellulose -- 2.2 Nanocellulose -- 2.3 Lignin -- 2.4 Chitin and Chitosan -- 3 What are Bionanocomposites? -- 4 Biofibers and Biopolymers Based Bionanocomposites -- 4.1 Cellulose-Based Bionanocomposites -- 4.2 Chitin and Chitosan-Based Bionanocomposites -- 4.3 Poly(hydroxyalkanoates)-Based Bionanocomposites -- 5 Applications of Bionanocomposites -- 6 Conclusions and Outlook -- References -- Bamboo Strips with Nodes: Composites Viewpoint -- 1 Introduction -- 2 Materials -- 3 Measurements -- 4 Mechanical Properties Investigation -- 5 Thermal Properties Investigation -- 6 Surface Morphology Investigation -- 7 Statistical Analysis -- 8 Tensile Properties of Bamboo Strips -- 9 Compressive Properties of Bamboo Strips -- 10 Flexural Properties of Bamboo Strips -- 11 Impact Properties of Bamboo Strips -- 12 Thermal Behavior of Bamboo Strips -- 13 Concluding Remarks -- References -- Water Hyacinth for Biocomposites-An Overview. , 1 Introduction -- 2 Properties of Water Hyacinth Fiber -- 3 Issues and Opportunities in Extraction -- 4 Treatment of the Water Hyacinth Fiber -- 5 Composite Preparations -- 6 Compression Molding -- 7 Properties of Water Hyacinth Composites -- 8 Biomass Production -- 9 Domestic Application -- 10 Engineering Application -- 11 Conclusion -- References -- Ionic Liquids Based Processing of Renewable and Sustainable Biopolymers -- 1 Introduction -- 1.1 Ionic Liquids (ILs) -- 1.2 Renewable and Sustainable Biopolymers -- 2 Dissolution of Biopolymers in ILs -- 2.1 Dissolution of Cellulose Biopolymer -- 2.2 Dissolution of Lignin -- 3 Processing of Biopolymers in ILs -- 3.1 Processing of Carbohydrate Biopolymers -- 3.2 Processing of Lignin -- 4 Closed Loop Biorefinery -- 5 ILs for Characterization of Renewable and Sustainable Biopolymers -- 6 Challenges for ILs Based Processing of Biopolymers -- 6.1 Reducing the Particle Size of Renewable Lignocellulosic Composites -- 6.2 Stability and Recycling Issues of ILs -- 6.3 Product Isolation from IL Post-Reaction Phase -- 6.4 Toxicity and Eco-Protection Hazards -- 6.5 Cost Effectiveness of ILs -- 7 Conclusion -- 8 Future Perspectives -- References -- Development of Porous Bio-Nano-Composites Using Microwave Processing -- 1 Introduction -- 2 Mechanism of Degradation -- 2.1 Fragmentation -- 2.2 Biodegradation -- 3 Classification of Biodegradable Polymers -- 3.1 Agro-Polymers -- 3.2 Polysaccharides -- 3.3 Protein -- 3.4 Micro-organism Derived -- 3.5 Bio-Derived Monomers -- 3.6 Petroleum Derived Monomers -- 4 Composite Fabrication -- 4.1 Fibre Reinforcement -- 4.2 Particulate Reinforcement -- 5 Introduction to Microwave-Assisted Heating -- 6 Microwave Material Interaction Mechanism -- 7 Case Study: Development of Biodegradable Porous Composite of Hydroxyapatite Reinforced PCL and PLA Composites -- 7.1 Initial Stage. , 7.2 Interaction Stage -- 7.3 Temperature Rising Stage -- 7.4 Heat Transfer Stage -- 7.5 Fabrication Stage -- 7.6 Leaching Stage -- 8 Microstructural Characterisation of Porous Composites -- 9 Comparison of Microwave Processed HA Reinforced PCL and PLA Porous Composites -- 10 Effect of Microwave Power on Interfacial Bonding -- 11 Effect of Dielectric Properties of Constituting Materials on Time-Temperature Curve -- 12 Concluding Remarks -- References -- Cellulose Based Biomaterials: Benefits and Challenges -- 1 Introduction -- 2 Bacterial Cellulose -- 2.1 Synthesis of BC -- 2.2 BC Cultivation Methods -- 2.3 Composite Formation -- 2.4 BNC Coating -- 2.5 Properties of BC -- 2.6 BNC Cultivation Methods -- 2.7 Agitated Culture -- 2.8 Effects of Drying Methods on Morphology of Membranes -- 2.9 In situ Modifications of Preformed BC -- 2.10 Uses of BC -- 3 Bacterial Cellulose for Biomedical Applications -- 3.1 Skin -- 3.2 Vascular Grafts -- 3.3 For Bone -- 3.4 Tissue Biocompatibility -- 3.5 Degradation of Cellulose -- 3.6 Cellulosic Composites -- 3.7 Drawbacks -- References -- Cellulose Based Bio Polymers: Synthesis, Functionalization and Applications in Heavy Metal Adsorption -- 1 Introduction -- 2 Nanocellulose: Synthesis, Functionalization and Applications -- 2.1 Synthesis of Nanocellulose -- 2.2 Functionalization -- 3 Functionalized Nanocellulose for the Adsorption of Heavy Metals from Contaminated Water -- 4 Concluding Remarks -- References -- Arundo Donax Fibers as Green Materials for Oil Spill Recovery -- 1 Introduction -- 2 Advances on Green Materials for Oil Spill Recovery Technologies -- 3 Fibers Preparation and Characterization -- 3.1 Arundo Donax Fibers Preparation -- 3.2 Sorption Capacity Experiment -- 4 Performance Evaluation and Characterization of Arundo Donax (AD) Fibers for Oil Spill Recovery Applications. , 4.1 Morphology of Arundo Donax Fibers -- 4.2 Sorption Performances -- 4.3 Morphological and Structural Aspects of Oil Spill AD Materials -- 5 Conclusions and Future Trends -- References -- Effect of Surface Modification on Characteristics of Naturally Woven Coconut Leaf Sheath Fabric as Potential Reinforcement of Composites -- 1 Introduction -- 2 Materials -- 3 Experimentation -- 3.1 CLS Fabric Tensile Test -- 4 Thermogravimetric Analysis (TGA) -- 5 Differential Scanning Calorimetry (DSC) -- 6 Results and Discussion -- 6.1 Naturally Woven CLS Fabric Tensile Test -- 7 Thermogravimetric Analysis (TGA) -- 8 Differential Scanning Calorimetry (DSC) -- 9 Conclusions -- References -- Effect of Glass and Banana Fiber Mat Orientation and Number of Layers on Mechanical Properties of Hybrid Composites -- 1 Introduction -- 2 Materials -- 3 Preparation of Composites -- 3.1 Characterization -- 4 Results and Discussion -- 4.1 Effect of Number and Orientation of Layers on Tensile Properties -- 5 Effect of Number and Orientation of Layers on Flexural Properties -- 6 Effect of Number and Orientation of Layers on Impact Properties -- 7 Conclusion -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Keywords: Electrochemical sensors. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (341 pages)
    Edition: 1st ed.
    ISBN: 9780128225134
    Series Statement: Micro and Nano Technologies Series
    DDC: 543
    Language: English
    Note: Front Cover -- Nanomaterials-based Electrochemical Sensors: Properties, Applications, and Recent Advances -- Copyright Page -- Contents -- List of contributors -- 1 Introduction: nanomaterials and electrochemical sensors -- 1.1 Introduction -- 1.2 Voltammetric methods -- 1.3 Cyclic voltammetry -- 1.4 Differential pulse voltammetry -- 1.5 Square wave voltammetry -- 1.6 Electrochemical impedance spectroscopy -- 1.7 Electronic tongue: concepts, principles, and applications -- 1.8 Future prospects -- 1.9 Conclusion -- References -- 2 Nanomaterial properties and applications -- 2.1 Nanomaterials -- 2.2 History -- 2.3 Nanomaterial type -- 2.3.1 According to their dimension -- 2.3.2 According to origin -- 2.3.3 According to chemical composition -- 2.3.4 Carbon-based nanomaterials -- 2.4 Metal nanomaterials -- 2.4.1 Bimetallic nanomaterials -- 2.5 Metal oxide nanomaterials -- 2.5.1 Composite nanomaterials -- 2.5.2 Metal-Organic Frameworks -- 2.5.3 Silicates -- 2.6 Properties of nanomaterials -- 2.6.1 Optical properties -- 2.6.2 Electronics properties -- 2.6.3 Mechanical Properties -- 2.6.4 Magnetic properties -- 2.6.5 Thermal properties -- 2.6.6 Physiochemical properties -- 2.7 Application -- 2.7.1 As a chemical catalyst -- 2.7.2 In food and agriculture -- 2.7.3 In energy harvesting -- 2.7.4 In medication and drug -- 2.7.5 Applications in electronics -- 2.7.6 In mechanical industries -- 2.7.7 In the environment -- 2.8 Conclusion -- References -- 3 Analytical techniques for nanomaterials -- 3.1 Introduction -- 3.2 Different analytical techniques for nanomaterials -- 3.2.1 Electron Microscopy -- 3.2.1.1 Transmission electron microscope -- 3.2.1.2 Scanning electron microscope -- 3.2.2 Dynamic light scattering -- 3.2.2.1 Correlation function -- 3.2.3 Atomic force microscope -- 3.2.4 X-ray diffraction -- 3.2.5 Zeta potential instrument. , 3.2.6 Emmett, Brunauer, and Teller or surface area -- 3.2.7 Fourier transform infrared spectroscopy -- 3.2.8 Thermogravimetric analysis -- 3.3 Conclusion -- References -- 4 Toxicity of nanomaterials -- 4.1 Introduction -- 4.1.1 Nanomaterials -- 4.1.2 Effect of physicochemical properties of nanomaterials on toxicity -- 4.2 Toxic effects of nanomaterials on humans and animals -- 4.3 Toxic effects of nanomaterials on microorganisms -- 4.4 Toxic effects of nanoparticles on plants -- 4.5 Assessment of toxicity of nanomaterials -- 4.5.1 Cytotoxic assays -- 4.5.1.1 5-Diphenyltetrazolium bromide assay -- 4.5.1.2 Reactive oxygen species/oxidative assays -- 4.5.1.3 Neutral red uptake assay -- 4.5.1.4 Apoptosis assay -- 4.5.2 Genotoxicity/mutagenicity assays -- 4.5.2.1 In vitro mammalian chromosomal aberration test -- 4.5.2.2 In vitro mammalian cell gene mutation tests using the Hprt and xprt Genes -- 4.5.2.3 In vitro mammalian micronucleus test -- 4.5.3 In vivo assessment of nanomaterials -- 4.5.3.1 Mammalian bone marrow chromosome aberration test -- 4.5.3.2 Mammalian erythrocyte micronucleus test (OECD 474-TG) -- 4.5.4 In silico models -- 4.6 Conclusion and future prospects -- Acknowledgements -- References -- 5 Electrochemical sensors and their types -- 5.1 Introduction -- 5.1.1 Electroanalytical chemistry -- 5.1.1.1 Electroanalytical techniques -- 5.1.1.2 Recent developments in detection techniques -- 5.1.1.3 Advantages -- 5.1.1.4 Improvements needed -- 5.1.2 Sensors -- 5.1.2.1 Ideal sensor -- 5.1.2.2 Chemical sensors -- 5.1.2.3 Types of chemical sensors -- 5.1.3 Electrochemical sensors -- 5.1.3.1 Construction of electrochemical sensors -- 5.1.3.2 Advantages of electrochemical sensors -- 5.1.3.3 Types of electrochemical sensors -- 5.1.4 Cyclic voltammetry -- 5.1.4.1 Basic principle of cyclic voltammetry -- 5.1.5 Applications of electrochemical sensors. , 5.1.6 Electrochemical sensing of heavy metal ions -- 5.1.6.1 General experimental setup -- 5.1.7 Carbon-based electrode materials -- 5.1.7.1 Glassy carbon electrodes -- 5.1.7.2 Chemically modified electrodes -- 5.1.7.3 Material used for chemical modification of a glassy carbon electrode -- 5.2 Conclusion -- References -- 6 Electrochemical sensors and nanotechnology -- Objectives -- 6.1 Introduction -- 6.2 Nanotechnology -- 6.2.1 Drug delivery -- 6.2.2 Nanofilms -- 6.2.3 Water filtration -- 6.2.4 Nanotubes -- 6.2.5 Nanoscale transistors -- 6.2.6 Nanorobots -- 6.2.7 Nanotechnology and space -- 6.2.8 Nanotechnology in electronics: nanoelectronics -- 6.2.9 Nanotechnology in medicine -- 6.3 Electrochemical sensors -- 6.3.1 Carbonaceous materials-based electrochemical sensors -- 6.3.2 Metal-derived materials-based electrochemical sensors -- 6.3.3 Nanomaterials-based electrochemical sensors -- 6.4 Nanosensing technology -- 6.5 Challenges -- 6.6 Future perspective -- 6.7 Conclusion -- References -- 7 Sensing methodology -- 7.1 Introduction -- 7.1.1 Advancements in nanotechnology -- 7.1.2 Development of nanomaterials -- 7.1.3 2-Dimensional nanomaterials -- 7.2 Sensing methodology -- 7.2.1 Electrochemical biosensors -- 7.2.2 Electrochemical sensors -- 7.3 Nanomaterial-based electrochemical biosensors for biomedical applications -- 7.3.1 Types of nanotechnologies used in the medical field -- 7.3.1.1 Carbon nanotubes -- 7.3.1.2 Metal nanoparticles -- 7.3.1.3 Nanotubes -- 7.4 Nanomaterials-based electrochemical biosensors for tumor cell diagnosis -- 7.4.1 Nanoshells and quantum dots -- 7.4.2 Electrochemical biosensor in cancer cell detection -- 7.4.3 Electrochemical immunosensors in cancer cell detection -- 7.4.4 Electrochemical nucleic acid biosensors in cancer cell detection -- 7.5 Nanomaterial-based electrochemical sensors for environmental applications. , 7.5.1 Sensor applications for pollution detection and environmental contaminants -- 7.5.1.1 Emerging contaminants and toxic gases -- 7.5.1.2 Screen-printed electrodes -- 7.5.1.3 Nanowires -- 7.5.2 Electrochemical sensors for toxic gas detection -- 7.5.2.1 Components and working of electrochemical sensors -- 7.5.2.2 Configurations of electrochemical sensors -- 7.6 Conclusions -- Acknowledgements -- References -- 8 Fabrication of biosensors -- 8.1 Introduction to biosensors -- 8.2 Components of biosensors -- 8.3 Biosensor transducers -- 8.3.1 Optical biosensors -- 8.3.2 Piezoelectric biosensors -- 8.3.3 Calorimetric biosensors -- 8.4 Electrochemical biosensor -- 8.4.1 Potentiometric biosensors -- 8.4.2 Amperometric biosensors -- 8.5 Electrode fabrication technologies -- 8.5.1 Fabrication of nanomaterial-based biosensors -- 8.5.1.1 Coating-based methods -- 8.5.1.2 Deposition-based methods of biosensor fabrication -- 8.5.1.3 Printing-based methods -- 8.6 Direct growth -- 8.7 Self-powered implantable biosensor -- 8.7.1 Glucose detection -- 8.8 Conclusion and outlook -- References -- 9 Metal oxide and their sensing applications -- 9.1 Introduction -- 9.1.1 Metal-oxides-based chemical sensors -- 9.1.2 Metal oxides-based biosensors -- 9.2 Overview of metal oxides for different applications -- 9.2.1 ZnO-based sensors -- 9.2.2 Indium oxide-based sensors -- 9.2.3 Nickel oxide-based sensors -- 9.2.4 Titanium oxide-based sensors -- 9.2.5 Copper oxides-based sensors -- 9.2.6 Tin oxide-based sensors -- 9.2.7 Cerium oxide-based sensors -- 9.2.8 Iron oxide-based sensors -- 9.3 Different sensing techniques for sensing applications -- 9.3.1 Electrochemical sensing technique -- 9.3.1.1 Cyclic voltammetry -- 9.3.1.2 Linear sweep voltammetry -- 9.3.1.3 Amperometry -- 9.3.1.4 Electrochemical impedance spectroscopy -- 9.3.2 Colorimetric technique. , 9.3.3 Fluorescence technique -- 9.3.4 Quartz crystal microbalance technique -- 9.3.5 Surface-enhanced Raman scattering technique -- 9.3.5.1 Electromagnetic process -- 9.3.5.2 Chemical process -- 9.4 Electrochemical sensing based on metal oxides -- 9.5 Colorimetric and fluorometric sensing based on metal oxides -- 9.6 Fluorescent and chemiluminescent sensing based on metal oxides -- 9.7 Issues and drawbacks -- 9.8 Conclusion and Future prospective -- References -- 10 RFID sensors based on nanomaterials -- 10.1 Introduction -- 10.2 Nanomaterials for RFID sensors -- 10.3 Inkjet printing of nanomaterial-based RFID sensors -- 10.4 Applications of RFID nanosensors -- 10.4.1 Energy -- 10.4.2 Food industry -- 10.4.3 Biomedical applications -- 10.4.4 Structural health -- 10.5 Conclusion -- Acknowledgment -- References -- 11 Biological and biomedical applications of electrochemical sensors -- 11.1 Introduction -- 11.2 Components of electrochemical sensors -- 11.2.1 Hydrophobic membrane -- 11.2.2 Electrodes -- 11.2.3 Electrolyte -- 11.2.4 Filters -- 11.3 Working principle of electrochemical sensors -- 11.4 Fabrication of nanomaterial-based electrochemical sensor -- 11.4.1 Magnetic nanomaterials -- 11.4.2 Polymer -- 11.4.3 Metal oxide -- 11.4.4 Noble metals -- 11.4.4.1 Gold nanoparticles -- 11.4.4.2 Silver nanoparticles -- 11.4.5 Carbon nanotubes -- 11.4.5.1 Graphene -- 11.5 Biological and biomedical applications of electrochemical sensors -- 11.5.1 In Metabolite -- 11.5.1.1 Glucose -- 11.5.2 Body fluid ketones -- 11.5.3 Recognition of H2O2 from breast cancer cells -- 11.5.4 Quantitation of neurochemicals -- 11.5.5 Electrochemical detection of antibiotics in biological samples -- 11.5.6 Measurement of biomolecules -- 11.5.7 Electrochemical detection of nitrogen oxide in human beings -- 11.5.8 Electrochemical detection of nitrogen oxide in plants. , 11.5.9 Electrochemical sensors for detecting pathogens.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Coordination polymers. ; Electronic books.
    Description / Table of Contents: The book focusses on the following applications: gas capture and storage, especially molecular hydrogen storage; performance enhancement of Li-ion batteries; gas separation, nano-filtration, ionic sieving, water treatment, and catalysis, etc. Keywords: MOF Materials, Hydrogen Storage, Renewable Energy Applications, Lithium Batteries, MOF-Quantum Dots, Clean Energy, Nanoporous MOFs, Supercapacitors, Therapeutic Applications, Biosensing, Bioimaging, Phototherapy of Cancer, Gas Separation, Nano-filtration, Ionic Sieving, Water Treatment, Drug Delivery, Theranostics; Nanoparticle Photosensitizers, Photodynamic Therapy (PDT), Photothermal Therapy (PTT).
    Type of Medium: Online Resource
    Pages: 1 online resource (427 pages)
    Edition: 1st ed.
    ISBN: 9781644900437
    Series Statement: Materials Research Foundations Series ; v.58
    DDC: 547.7
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Multiscale Study of Hydrogen Storage in Metal-Organic Frameworks -- 1. Introduction -- 2. DFT study of site characteristics in MOFs for hydrogen adsorption -- 3. Grand Canonical Monte Carlo (GCMC) for gravimetric and volumetric uptakes -- Conclusion -- Reference -- 2 -- Metal Organic Frameworks Based Materials for Renewable Energy Applications -- 1. Introduction -- 2. Need for renewal energy -- 3. Metal organic frameworks -- 4. MOFs for environmental applications and renewable energy -- 5. Metallic organic framework based materials for hydrogen energy applications -- 6. Hydrogen Storage by MOFs -- 7. Storage of gases and separation process by MOFs -- 8. Metal organic frameworks based materials for conversion and storage of CO2 -- 9. Use of MOFs for biogas -- 10. Storage of thermal energy using MOF materials -- 11. Metal organic frameworks based materials for oxygen catalysis -- 12. MOF based materials for rechargeable batteries and supercapacitors -- 13. Metal organic framework based materials in the use of dye sensitized solar cells -- Conclusion -- References -- 3 -- Metal Organic Frameworks Composites for Lithium Battery Applications -- 1. Introduction -- 2. Applications of MOFs in lithium-ion batteries -- 3. Applications of MOFs in lithium sulphur batteries. -- 4. Summary and outlook -- References -- 4 -- Metal-Organic-Framework-Quantum Dots (QD@MOF) Composites -- 1. Introduction -- 1.1 Metal-organic frameworks -- 1.2 Quantum dots -- 1.3 Gold QDs (AuQDs) -- 2. QD polymeric materials -- 2.1 Integration of QDs -- 2.2 Methods of encapsulating QD to polymer matrices -- 2.3 Incorporation into premade polymers -- 2.4 Suspension polymerization -- 2.5 Encapsulation via emulsion polymerization -- 2.6 Encapsulation via miniemulsion polymerization -- 3. QD hybrid materials. , 3.1 Strategies to generate QD hybrid materials -- 3.2 Exchanging ligand between polymer and QDs -- 3.3 Polymer grafting to QDs -- 3.4 Polymer grafting from QDs -- 3.5 Polymer capping into QDs -- 3.6 QDs growth within polymer -- 3.7 Challenges in biocompatible polymer/QDs -- 4. Applications of QD composites -- 4.1 Bio-imaging -- 4.2 Photo-thermal therapies -- 4.3 Opto-electric applications -- 4.3.1 QD LEDs -- 4.3.2 Polymer QD liquid crystal displays -- 4.3.3 QD polymer photo-voltaic devices -- 5. Metallic NCs -- 5.1 Classification of metallic NCs -- 5.2 Production of metallic NCs -- 5.2.1 Metallic NCs synthesis methods -- 5.3 Applications of metallic nano-particles -- 5.3.1 Silver NCs -- 5.3.2 Pbs QDs -- Conclusion -- References -- 5 -- Designing Metal-Organic-Framework for Clean Energy Applications -- 1. Introduction -- 1.1 Introduction to MOF Composites & -- Derivatives -- 1.2 Chemistry of MOFs -- 2. Applications of MOF in clean energy -- 2.1 Hydrogen Storage -- 2.2 Carbon dioxide capture -- 2.3 Methane storage -- 2.4 Electrical energy storage and conversion -- 2.4.1 Fuel cell -- 2.5 MOFs for supercapacitor applications -- 2.6 NH3 removal -- 2.7 Benzene removal -- 2.8 NO2 removal -- 2.9 Photocatalysis -- Conclusion -- References -- 6 -- Nanoporous Metal-Organic-Framework -- 1. Introduction -- 1.1 Fundamental stabilities of nano MOFs -- 1.1.1 Chemical stability -- 1.1.2 In water medium -- 1.1.3 In acid/base condition -- 1.1.4 Thermal Stability -- 1.1.5 Mechanical Stability -- 1.2 Synthesis -- 1.2.1 Modulated synthesis -- 1.2.2 Post-synthetic modification (PSM) -- 1.3 Applications of MOFs -- 1.3.1 Gas separations and storage -- 1.3.2 Catalysis -- 1.3.2.1 Lewis acid catalysis -- 1.3.2.2 Bronsted acid catalysis -- 1.3.2.3 Redox Catalysis -- 1.3.2.4 Photocatalysis -- 1.3.2.5 Electrocatalysis -- 1.3.3 Water treatment -- 1.4 Other applications. , 1.4.1 Sensors -- 1.4.2 Supercapacitors -- 1.4.3 Biomedical applications -- Conclusion -- References -- 7 -- Metal-Organic-Framework-Based Materials for Energy Applications -- 1. Introduction -- 1.1 Role of MOF in supercapacitor -- 1.2 Role of MOF in oxygen evolution reaction (OER) -- 2. Synthesis of Ni3(HITP)2 MOF -- 3. Characterization of Ni3(HITP)2 MOF -- 4. Ni3(HITP)2MOF as supercapacitor electrode for EDLC : -- 5. Two electrode measurements -- 6. Electrochemical impedance (EIS) measurements -- 7. Device performance -- 8. Hybrid Co3O4C nanowires electrode for OER process -- 9. Synthesis of hybrid Co3O4C nanowires -- 10. Characterization of hybrid Co3O4C nanowires -- 11. Hybrid Co3O4C nanowires MOF electrode for oxygen evolution reaction -- Conclusion -- References -- 8 -- Metal-Organic-Framework Composites as Proficient Cathodes for Supercapacitor Applications -- 1. Introduction -- 2. MOFs: Structure, properties and strategies for SCs -- 3. Single-metal MOFs -- 4. Bimetal or doped MOFs -- 5. Hybrids and composites -- 6. Flexible or freestanding SCs -- Conclusion and Perspectives -- References -- 9 -- Metal-Organic Frameworks and their Therapeutic Applications -- 1. Introduction -- 2. Metal-organic frameworks -- 2.1 Usage areas of metal-organic frameworks -- 2.1.1 Controlled drug release -- 2.1.2 Antibacterial activity of MOFs -- 2.1.3 Biomedicine -- 2.1.4 Chemical sensors -- Conclusions and recommendations -- References -- 10 -- Significance of Metal Organic Frameworks Consisting of Porous Materials -- 1. Introduction -- 1.1 Definition of porosity -- 2. Inferences obtained from the wide range of relevant research articles -- 2.1 Introduction to porous MOFs -- 2.2 Zeolites - an amorphous & -- inorganic porous material -- 2.3 Activated carbon - an organic porous material -- 2.4 Formation of pores in MOFs -- 2.5 Types of pores. , 2.6 Characterization of porous MOFs -- 2.7 Checking for permanent porosity -- 2.8 Advantages of MOF porous materials -- 2.9 Porous MOFs in separation of gases -- 2.10 Nanoporous MOFs -- Conclusion -- References -- 11 -- Metal Organic Frameworks (MOF's) for Biosensing and Bioimaging Applications -- 1. Introduction -- 2. In vitro MOF complex sensors -- 2.1 DNA-RNA-MOF complex sensor -- 2.2 Enzyme-MOF complex -- 2.2.1 Enzymatic-MOF complex -- 2.2.2 Non-enzymatic-MOF complex -- 2.3 Fluorescent-MOF complex -- 3. In-vivo MOF complex sensors -- 3.1 MR complex -- 3.2 CT complex -- Conclusions and recommendations -- References -- 12 -- Nanoscale Metal Organic Framework for Phototherapy of Cancer -- 1. Introduction -- 2. Nanoscience and nanotechnology -- 2.1 Tumor ablation and nanotechnology in cancer treatment -- 3. Metal organic frameworks (MOFs) -- 4. Photothermal therapy (PTT) -- 5. Photodynamic therapy (PDT) -- 6. Historical development of phototherapy -- 7. Mechanism of phototherapy -- 7.1 Basic elements of photodynamic therapy -- 7.1.1 Singlet oxygen -- 7.1.2 Light sources -- 8. Photosensitizers (PSs) -- 8.1 First generation photosensitizers -- 8.2 Second generation photosensitizers -- 8.3 Third generation photosensitizers -- 8.4 Introduction of tumor cells and intracellular localization of photosensitizer -- 9. Cell death in phototherapy -- 10. nMOFs for PDT -- 11. nMOFs for PTT -- 11.1 Surface plasmon resonance (SPR) mechanism and plasmonic photothermal treatment (PPTT) method -- 11.1.1 Mie theory -- 11.1.2 Gold nanostructures -- 11.1.3 Photothermal properties of different gold nanostructures -- 11.1.4 Gold nanospheres used in photothermal therapy -- 11.1.5 Gold nanocages and nanorods used in photothermal therapy -- 11.1.6 Bioconjugation of gold nanostructures used in photothermal therapy -- 11.1.7 Determination of temperature changes in gold surface. , 12. Results and Perspectives -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Perovskite. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (458 pages)
    Edition: 1st ed.
    ISBN: 9780128204009
    Series Statement: Woodhead Publishing Series in Composites Science and Engineering Series
    DDC: 549.528
    Language: English
    Note: Intro -- Hybrid Perovskite Composite Materials: Design to Applications -- Copyright -- Contents -- Contributors -- 1 Nano-crystalline perovskite and its applications -- 1.1 Common material structures -- 1.2 Nonstoichiometry in perovskites -- 1.3 Crystallography and chemistry of perovskite structures -- 1.3.1 Size effects -- 1.3.2 Effect of the composition variation from the ideal ABO3 -- 1.3.3 Single perovskite -- 1.3.4 Double perovskite -- 1.4 Nano-structured perovskite level -- 1.5 Applications for nano-perovskites -- 1.6 Conclusion -- References -- 2 Preparation and processing of nanocomposites of all-inorganic lead halide perovskite nanocrystals -- 2.1 Introduction -- 2.2 Nanocomposites based on conventional semiconductor nanocrystals-Brief overview -- 2.3 Fabrication and processing of nanocomposites of all-inorganic perovskite nanocrystals -- 2.3.1 Preparation of silica, titania, zirconia, and siloxane-based perovskite nanocomposites -- 2.3.1.1 Preparation of nanocomposites of LHP NCs/SiO 2 and SiO 2 -related compounds -- 2.3.1.2 Preparation of LHP NCs/titania (TiO 2) composites -- 2.3.1.3 Preparation of LHP NCs/alumina (Al 2 O 3) composites -- 2.3.1.4 Preparation of LHP NCs/zirconia (ZrO 2) composites -- 2.3.1.5 Miscellaneous -- 2.3.2 Preparation of polymer-based perovskite nanocomposites -- 2.3.2.1 Preparation and properties of CsPbX 3 NCs/poly-methyl-methacrylate (PMMA) composites -- 2.3.2.2 Preparation and properties of CsPbX 3 NCs/polystyrene (PS) composites -- 2.3.2.3 Role of polymeric oligomeric silsesquioxane (POSS) in improving properties of CsPbX 3 NCs -- 2.3.3 Nanocomposites of mixed perovskite phases -- 2.3.4 Miscellaneous -- 2.4 Conclusion and future perspectives -- Acknowledgments -- References -- 3 Thin films for planar solar cells of organic-inorganic perovskite composites -- 3.1 Introduction. , 3.1.1 History of perovskite solar cells -- 3.2 Perovskite solar cells: Architecture, evolution, and thin-film synthesis -- 3.2.1 The architecture of PSCs -- 3.2.2 Evolution of PSC -- 3.2.3 Thin film formation -- 3.2.3.1 Vacuum thermal coevaporation -- 3.2.3.2 Layer-by-layer sequential vacuum sublimation -- 3.2.3.3 Vapor deposition by dual-source -- 3.2.3.4 Spin coating -- 3.2.3.5 Spray coating -- 3.2.3.6 Screen printing -- 3.2.4 Thin-films for perovskite solar cells: A case study -- 3.2.4.1 Fundamentals of photovoltaic devices -- 3.2.4.2 Optical and electrical properties of perovskite solar cells -- 3.3 Future scope of perovskite solar cells -- 3.4 Conclusion -- Acknowledgments -- References -- 4 Perovskite-type catalytic materials for water treatment -- 4.1 Introduction -- 4.2 Structure of perovskites -- 4.3 Synthesis methods of perovskites -- 4.3.1 Sol-gel method -- 4.3.2 Coprecipitation method -- 4.3.3 Hydrothermal method -- 4.3.4 Solid-state method -- 4.3.5 Microwave radiation method -- 4.4 Perovskite catalyst for water treatment -- 4.4.1 Process based on advanced oxidation process (AOPs) -- 4.4.1.1 Dye degradation -- 4.4.2 Process based on photocatalysis -- 4.5 Summary and perspective -- Acknowledgments -- References -- 5 Perovskite-based material for sensor applications -- 5.1 Introduction -- 5.2 Synthesis of perovskite materials -- 5.2.1 Solid-state reactions -- 5.2.2 Hydrothermal synthesis -- 5.2.3 Coprecipitation method -- 5.2.4 Sol-gel method -- 5.2.5 Gas phase reaction -- 5.2.6 Microwave synthesis -- 5.2.7 Wet chemical methods -- 5.3 Fabrication of sensors -- 5.3.1 Screen printing -- 5.3.2 Chemical vapor deposition -- 5.3.3 Sol-gel method -- 5.3.4 Spray pyrolysis -- 5.3.5 Physical vapors deposition -- 5.4 Perovskites as sensors -- 5.4.1 Perovskites as temperature sensors. , 5.4.2 Humidity sensors -- 5.4.3 Perovskites as gas sensors -- 5.4.4 Perovskite sensors for explosive species -- 5.5 Conclusions and future outlook -- References -- Further reading -- 6 High-sensitivity piezoelectric perovskites for magnetoelectric composites -- 6.1 Introduction -- 6.2 Historical background of ME coupling -- 6.3 Theoretical background -- 6.3.1 Perovskite oxide -- 6.3.2 Key piezoelectric and magnetostrictive parameters -- 6.3.3 ME effect -- 6.4 Factors influencing performance of ME composites -- 6.4.1 Nature of prominent phases -- 6.4.2 Geometrical configurations -- 6.4.3 Selection criteria for ME composites -- 6.5 Perovskite structure-based ME materials -- 6.5.1 Pb-based composites -- 6.5.2 Green ME composites -- 6.5.2.1 Barium titanate-based ME composites -- 6.5.2.2 Bismuth ferrite-based ME composites -- 6.5.2.3 Potassium niobate-based composites -- 6.6 Applications of ME composites -- 6.6.1 ME nanoparticles in nanomedicine -- 6.6.2 Energy harvesters -- 6.6.3 Magnetic sensors -- 6.7 Future directions -- 6.8 Conclusions -- References -- 7 Spectroscopic parameters of red emitting Eu3 +-doped La2Ba3B4O12 phosphor for display and forensic applicatio ... -- 7.1 Introduction -- 7.2 Synthesis and characterization of prepared phosphor -- 7.2.1 Materials and methods -- 7.2.2 Experimental details -- 7.3 Results and discussion -- 7.3.1 Phase identification and structural refinement -- 7.3.2 FTIR analysis of prepared LBBO:Eu3 + phosphors -- 7.3.3 Morphology -- 7.3.4 PL excitation and emission spectra for LBBO doped with Eu3 + -- 7.3.4.1 PL excitation studies of Eu3 + in LBBO host matrix -- Charge-transfer (CT) transition -- 7.3.4.2 Emission transitions of Eu3 + in LBBO host matrix -- 7.3.4.3 Concentration quenching -- 7.4 Fingerprint detection in different materials -- 7.5 Conclusion -- Acknowledgments. , References -- 8 Perovskite's potential functionality in a composite structure -- 8.1 Introduction -- 8.2 Structure of perovskites -- 8.2.1 Structure of LaCrO3 -- 8.2.2 Structure of LaFeO3 -- 8.3 Methods of synthesis -- 8.3.1 Pechini method -- 8.3.2 Conventional method -- 8.3.3 Citrate method -- 8.3.4 Oxalate method -- 8.3.5 Microwave-aided method -- 8.3.6 Combustion method -- 8.3.7 Sol-gel method -- 8.3.8 Solid-state oxide reaction method -- 8.3.9 Coprecipitation method -- 8.3.10 Solution combustion synthesis (SCS) -- 8.3.11 Polymer precursor method -- 8.4 Applications of perovskite oxides -- 8.5 Conclusion -- References -- 9 Compositional engineering of perovskite materials -- 9.1 Introduction -- 9.2 Synthesis methods for the compositional engineering -- 9.2.1 Solid-state reaction -- 9.2.2 Wet chemical methods -- 9.2.2.1 The chemical coprecipitation methods include two typical strategies -- 9.2.2.2 The sol-gel method -- 9.2.3 Hydrothermal synthesis method -- 9.3 Compositional engineering in BiFeO3-based perovskites -- 9.4 Compositional engineering in bismuth-layered perovskites -- 9.5 Conclusion -- Acknowledgments -- References -- 10 Development of hybrid organic-inorganic perovskite (HOIP) composites -- 10.1 Introduction -- 10.2 Types of HOIPs -- 10.2.1 Development of ferroelectric HOIPs -- 10.2.1.1 1D-HOIPs -- 10.2.1.2 2D-HOIPs -- 10.2.1.3 3D-HOIPs -- 10.2.2 Development of dielectric HOIPs -- 10.2.3 Development of piezoelectric HOIPs -- 10.2.4 Development of pyroelectric HOIPs -- 10.3 Development in electrochemical and photovoltaic behavior of HOIPs -- 10.4 Conclusions -- References -- Further reading -- 11 Progress in efficiency and stability of hybrid perovskite photovoltaic devices in high reactive environments -- 11.1 Introduction -- 11.2 Progress in efficiency -- 11.3 Progress in stability. , 11.3.1 Factors affecting stability -- 11.3.1.1 Effect of oxygen and moisture -- 11.3.1.2 Effect of Temperature -- 11.3.1.3 Effect of illumination -- 11.3.1.4 Other factors -- 11.4 Summary and future scope -- References -- 12 Enhancement of photoluminescence/phosphorescence properties of Eu3 +-doped Gd2Zr2O7 phosphor -- 12.1 Introduction -- 12.2 Experimental -- 12.3 Results and discussion -- 12.3.1 X-ray diffraction analysis -- 12.3.2 SEM images of phosphor -- 12.3.3 Photoluminescence studies of pure and Eu3 +-doped GZO phosphor -- 12.4 PL studies of Eu3 +-doped GZO phosphor -- 12.4.1 CIE coordinate -- 12.5 Conclusion -- Acknowledgments -- References -- 13 Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications -- 13.1 Introduction and general features -- 13.2 Perovskite and perovskite structure -- 13.3 Three-dimensional organic-inorganic hybrid halide perovskites -- 13.3.1 Gold Schmidt's and tolerance factor concept -- 13.4 Low-dimensional organic-inorganic hybrid layered halide perovskites -- 13.4.1 Dimensionality -- 13.4.2 Two-dimensional perovskite system -- 13.5 Double perovskite structure -- 13.6 Hybrid halide double perovskite -- 13.7 Applications -- 13.7.1 Electronic applications (photovoltaic and solar cells) -- 13.7.2 Optoelectronic applications -- 13.7.2.1 Light-emitting diode -- 13.7.2.2 Lasers -- 13.7.2.3 Photodetectors -- 13.7.2.4 Water-splitting -- 13.7.2.5 Field effect transistors -- 13.8 Conclusion -- 13.9 Vision for the future -- References -- 14 Hybrid perovskite photovoltaic devices: Architecture and fabrication methods based on solution-processed metal oxide tr ... -- 14.1 Introduction -- 14.1.1 Electron transport layer (ETL) -- 14.1.2 Hole transport layer (HTL) -- 14.2 Conclusion -- Acknowledgments -- Conflict of interest -- References. , 15 Composite perovskite-based material for chemical-looping steam methane reforming to hydrogen and syngas.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Polymers-Electric properties. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (264 pages)
    Edition: 1st ed.
    ISBN: 9783527807901
    Language: English
    Note: Cover -- Title Page -- Copyright -- Dedication -- Contents -- About the Editors -- Preface -- Chapter 1 Bioinspired Polydopamine and Composites for Biomedical Applications -- 1.1 Introduction -- 1.2 Synthesis of Polydopamine -- 1.2.1 Polymerization of Polydopamine -- 1.2.2 Synthesis of Polydopamine Nanostructures -- 1.3 Properties of Polydopamine -- 1.3.1 General Properties of Polydopamine -- 1.3.2 Electrical Properties of Polydopamine -- 1.4 Applications of Polydopamine -- 1.4.1 Biomedical Applications of Polydopamine -- 1.5 Conclusion and Future Prospectives -- References -- Chapter 2 Multifunctional Polymer-Dilute Magnetic Conductor and Bio-Devices -- 2.1 Introduction -- 2.2 Magnetic Semiconductor-Nanoparticle-Based Polymer Nanocomposites -- 2.3 Types of Magnetic Semiconductor Nanoparticles -- 2.3.1 Metal and Metal Oxide Nanoparticles -- 2.3.2 Ferrites -- 2.3.3 Dilute Magnetic Semiconductors -- 2.3.4 Manganites -- 2.4 Synthetic Strategies for Composite Materials -- 2.4.1 Physical Methods -- 2.4.2 Chemical Methods -- 2.5 Biocompatibility of Polymer/Semiconductor-Particle-Based Nanocomposites and Their Products for Biomedical Applications -- 2.5.1 Biocompatibility -- 2.6 Biomedical Applications -- References -- Chapter 3 Polymer-Inorganic Nanocomposite and Biosensors -- 3.1 Introduction -- 3.2 Nanocomposite Synthesis -- 3.3 Properties of Polymer-Based Nanocomposites -- 3.3.1 Mechanical Properties -- 3.3.2 Thermal Properties -- 3.4 Electrical Properties -- 3.5 Optical Properties -- 3.6 Magnetic Properties -- 3.7 Application of Polymer-Inorganic Nanocomposite in Biosensors -- 3.7.1 DNA Biosensors -- 3.7.2 Immunosensors -- 3.7.3 Aptamer Sensors -- 3.8 Conclusions -- References -- Chapter 4 Carbon Nanomaterial-Based Conducting Polymer Composites for Biosensing Applications -- 4.1 Introduction. , 4.2 Biosensor: Features, Principle, Types, and Its Need in Modern-Day Life -- 4.2.1 Important Features of a Successful Biosensor -- 4.2.2 Types of Biosensors -- 4.2.3 Need for Biosensors -- 4.3 Common Carbon Nanomaterials and Conducting Polymers -- 4.3.1 Carbon Nanotubes (CNTs) and Graphene (GN) -- 4.3.2 Conducting Polymers -- 4.4 Processability of CNTs and GN with Conducting Polymers, Chemical Interactions, and Mode of Detection for Biosensing -- 4.5 PANI Composites with CNT and GN for Biosensing Applications -- 4.5.1 Hydrogen Peroxide (H2O2) Sensors -- 4.5.2 Glucose Biosensors -- 4.5.3 Cholesterol Biosensors -- 4.5.4 Nucleic Acid Biosensors -- 4.6 PPy and PTh Composites with CNT and GN for Biosensing Applications -- 4.7 Conducting Polymer Composites with CNT and GN for the Detection of Organic Molecules -- 4.8 Conducting Polymer Composites with CNT and GN for Microbial Biosensing -- 4.9 Conclusion and Future Research -- References -- Chapter 5 Graphene and Graphene Oxide Polymer Composite for Biosensors Applications -- 5.1 Introduction -- 5.2 Polymer-Graphene Nanocomposites and Their Applications -- 5.2.1 Polyaniline -- 5.2.2 Polypyrrole -- 5.3 Conclusions,Challenges, and Future Scope -- References -- Chapter 6 Polyaniline Nanocomposite Materials for Biosensor Designing -- 6.1 Introduction -- 6.2 Importanceof PANI-Based Biosensors -- 6.3 Polyaniline-Based Glucose Biosensors -- 6.4 Polyaniline-Based Peroxide Biosensors -- 6.5 Polyaniline-Based Genetic Material Biosensors -- 6.6 Immunosensors -- 6.7 Biosensorsof Phenolic Compounds -- 6.8 Polyaniline-Based Biosensor for Water Quality Assessment -- 6.9 Scientific Concerns and Future Prospects of Polyaniline-Based Biosensors -- 6.10 Conclusion -- References -- Chapter 7 Recent Advances in Chitosan-Based Films for Novel Biosensor -- 7.1 Introduction -- 7.2 Chitosanas Novel Biosensor -- 7.3 Application. , 7.4 Conclusion and Future Perspectives -- Acknowledgment -- References -- Chapter 8 Self Healing Materials and Conductivity -- 8.1 Introduction -- 8.1.1 What Is Self-Healing? -- 8.1.2 History of Self-Healing Materials -- 8.1.3 What Can We Use Self-Healing Materials for? -- 8.1.4 Biomimetic Materials -- 8.2 Classification of Self-Healing Materials -- 8.2.1 Capsule-Based Self-Healing Materials -- 8.2.2 Vascular Self-Healing Materials -- 8.2.3 Intrinsic Self-Healing Materials -- 8.3 Conductivity in Self-Healing Materials -- 8.3.1 Applications and Advantages -- 8.3.2 Aspects of Conductive Self-Healing Materials -- 8.4 Current and Future Prospects -- 8.5 Conclusions -- References -- Chapter 9 Electrical Conductivity and Biological Efficacy of Ethyl Cellulose and Polyaniline-Based Composites -- 9.1 Introduction -- 9.2 Conductivity of EC Polymers -- 9.2.1 Synthesis of EC-Inorganic Composites -- 9.2.2 Conductivity of EC-Based Composites -- 9.3 Conductivity of PANI Polymer -- 9.3.1 Synthesis of PANI-Based Comp -- 9.3.2 Conductivity of PANI-Based Composites -- 9.4 Biological Efficacy of EC and PANI-Based Composites -- 9.5 Summary and Conclusion -- Acknowledgments -- References -- Chapter 10 Synthesis of Polyaniline-Based Nanocomposite Materials and Their Biomedical Applications -- 10.1 Introduction -- 10.2 Biomedical Applications of PANI-Supported Nanohybrid Materials -- 10.2.1 Biocompatibility -- 10.2.2 Antimicrobial Activity -- 10.2.3 Tissue Engineering -- 10.3 Conclusion -- Acknowledgment -- References -- Chapter 11 Electrically Conductive Polymers and Composites for Biomedical Applications -- 11.1 Introduction -- 11.2 Conducting Polymers -- 11.2.1 Conducting Polymer Synthesis -- 11.2.2 Types of Conducting Polymer Used for Biomedical Applications -- 11.3 Conductive Polymer Composite -- 11.3.1 Types of Conductive Polymer Composite. , 11.3.2 Methods for the Synthesis of Conductive Polymer Composites -- 11.4 Biomedical Applications of Conductive Polymers -- 11.4.1 Electrically Conductive Polymer Systems (ECPs) for Drug Targeting and Delivery -- 11.4.2 Electrically Conductive Polymer System (ECPs) for Tissue Engineering and Regenerative Medicine -- 11.4.3 Electrically Conductive Polymer Systems (ECPs) as Sensors of Biologically Important Molecules -- 11.5 Future Prospects -- 11.6 Conclusions -- References -- Index -- EULA.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Keywords: Carbon composites-Electric properties. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (425 pages)
    Edition: 1st ed.
    ISBN: 9789811917509
    Series Statement: Composites Science and Technology Series
    DDC: 541.395
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...