GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (29)
Keywords
Language
Years
Year
  • 1
    Online Resource
    Online Resource
    Les Ulis :EDP Sciences,
    Keywords: Lamiaceae. ; Lamiaceae-Classification. ; Microtoena-Classification. ; Electronic books.
    Description / Table of Contents: No detailed description available for "A Monograph of the genus Microtoena (Lamiaceae)".
    Type of Medium: Online Resource
    Pages: 1 online resource (150 pages)
    Edition: 1st ed.
    ISBN: 9782759825295
    Series Statement: Current Natural Sciences Series
    Language: English
    Note: Intro -- A Monograph of the Genus Microtoena (Lamiaceae) -- DEDICATION -- PREFACE -- ACKNOWLEDGEMENTS -- CONTENTS -- CHAPTER I. TAXONOMIC HISTORY AND QUESTIONS TO BE ADDRESSED -- TAXONOMIC HISTORY -- CIRCUMSCRIPTION AND PHYLOGENETICAL POSITION -- SUBDIVISION -- SPECIES DELIMITATION -- QUESTIONS TO BE ADDRESSED -- CHAPTER II. MORPHOLOGY -- ROOTS -- STEMS -- LEAVES -- LEAF LENGTH -- LEAF SHAPE -- LEAF MARGIN -- LEAF BASE -- LEAF SURFACE -- INFLORESCENCE -- BRACTS -- BRACT LENGTH -- BRACT SHAPE -- CALYX -- CALYX LENGTH -- CALYX SPLIT RATIO -- CALYX TOOTH RATIO -- COROLLA -- COROLLA COLOUR -- COROLLA LENGTH -- COROLLA TUBE RATIO -- APEX OF THE UPPER LIP OF THE COROLLA -- HAIRS OF THE UPPER LIP OF THE COROLLA -- MIDDLE LOBE OF THE LOWER LIP OF THE COROLLA -- STAMENS -- ANTHERS -- HAIRS ON THE FILAMENTS -- STYLE -- POLLEN -- FRUITS -- CHAPTER III. MOLECULAR PHYLOGENY, BIOGEOGRAPHY AND CHARACTER EVOLUTION -- PHYLOGENETICAL POSITION AND SUBDIVISION -- ORIGIN AND DIVERSIFICATION -- CHARACTER EVOLUTION -- CHAPTER IV. TAXONOMIC REVISION OF MICROTOENA -- MICROTOENA PRAIN -- KEY TO SECTIONS AND SPECIES OF MICROTOENA -- SECTION 1. Microtoena -- 1. Microtoena esquirolii -- 2. Microtoena insuavis -- 3. Microtoena patchoulii -- 4. Microtoena mollis -- SECTION. 2. Delavayana -- 5. Microtoena delavayi -- 6. Microtoena wardii -- 7. Microtoena urticifolia -- 8. Microtoena albescens -- 9. Microtoena stenocalyx -- 10. Microtoena miyiensis -- 11. Microtoena megacalyx -- 12. Microtoena moupinensis -- 14. Microtoena muliensis -- 13. Microtoena prainiana -- 15. Microtoena omeiensis -- 16. Microtoena brevipedunculata -- 17. Microtoena nepalensis -- 18. Microtoena robusta -- 19. Microtoena vanchingshanensis -- EXCLUDED NAME -- BIBLIOGRAPHY -- INDEX TO SPECIMENS CITED -- INDEX TO BOTANICAL NAMES AND SYNONYMS -- DATA OF STANDARD DEVIATION ANALYSIS.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford :CAB International,
    Keywords: Electronic books.
    Description / Table of Contents: This book features recent developments from cyanobacteria to eukaryotic algae, from theoretical biology to applied biology. It also includes the latest advancements in algal-based synthetic biology, including metabolic engineering, artificial biological system construction and green chemicals production.
    Type of Medium: Online Resource
    Pages: 1 online resource (325 pages)
    Edition: 1st ed.
    ISBN: 9781800621954
    Series Statement: CABI Biotechnology Series
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Photosynthesis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (346 pages)
    Edition: 1st ed.
    ISBN: 9789811531101
    DDC: 581.13342
    Language: English
    Note: Intro -- Preface -- Contents -- Part I: Photosynthesis and Energy Transfer -- Molecular Mechanism of Photosynthesis Driven by Red-Shifted Chlorophylls -- 1 General Knowledge of Photosynthesis -- 2 Photosynthetic Organisms -- 2.1 Photosynthetic Eukaryotes -- 2.2 Photosynthetic Prokaryotes -- 2.2.1 Anoxygenic Photosynthetic Prokaryotes -- 2.2.2 Oxygenic Photosynthetic Prokaryotes (Cyanobacteria) -- 3 Photopigments -- 3.1 Carotenoids -- 3.2 Phycobiliprotein Complexes -- 3.3 Chlorophylls -- 3.3.1 Chl a and Its Spectral Properties -- 3.3.2 Formyl Substitution in Chl b, Chl d, and Chl f -- 3.3.3 Diformyl Variants -- 3.3.4 Chl c Family -- 3.3.5 Other Chlorophyll Variants (Including Chemically Modified) -- 4 Photopigment-Binding Protein Complexes -- 4.1 Photosystem I -- 4.2 Photosystem II -- 4.3 Chlorophyll-Binding Light-Harvesting Protein Complexes (CBPs) -- 4.3.1 Inner Antenna Complexes -- 4.3.2 Chl-Binding Proteins in Cyanobacteria -- 4.3.3 Iron-Stress-Induced Chlorophyll-binding Protein A (IsiA) -- 4.4 Phycobilisomes (PBSs) -- 5 Acaryochloris marina -- 5.1 Light-Harvesting Systems -- 5.1.1 Chl d-Binding Light-Harvesting Proteins -- 5.1.2 Phycobiliproteins -- 5.2 Photosystems -- 5.3 Biochemistry of Chlorophyll d -- 6 Chl f-Producing Cyanobacteria -- 6.1 Occurrence of Chl f-Producing Cyanobacteria -- 6.2 Chl f and Photosynthetic Reactions -- 6.3 Biochemistry of Chl f -- 7 Applications of Red-Shifted Chlorophylls -- References -- Cyanobacterial NDH-1-Photosystem I Supercomplex -- 1 Introduction -- 2 Identification -- 3 Function -- 4 Assembly -- 5 Evolutional Change -- 6 Concluding Remarks -- References -- Recent Progress on the LH1-RC Complexes of Purple Photosynthetic Bacteria -- 1 Introduction -- 2 Structure of the LH1-RC Complexes -- 2.1 Overall Structure of LH1-RC Complex -- 2.2 Novel Structural Features of the Intact RC Complex. , 2.3 Potential Exchange Pathway for Quinones -- 2.4 Structural Basis for the Redshift and Enhanced Thermostability -- 3 Dynamic Process Involved in the LH1-RC -- 3.1 Exciton Delocalization and Relaxation on the LH1 Ring -- 3.2 LH1 → RC Energy Trapping -- 3.3 Charge Separation and Electron Transfer in RC -- 3.4 Carotenoid and Photo-Protection -- 4 Concluding Remarks -- References -- Composition, Organisation and Function of Purple Photosynthetic Machinery -- 1 General Introduction -- 2 Structural Components -- 2.1 Peripheral Antenna Complexes -- 2.1.1 Light-Harvesting Complex 2 -- 2.1.2 Light-Harvesting Complexes 3 and 4 -- 2.2 The Core Complex of Purple Bacterial Photosynthesis -- 2.2.1 Light-Harvesting Complex 1 -- 2.2.2 The Photochemical Reaction Centre -- 2.2.2.1 Quinones -- 2.2.3 Additional Core Complex Components -- 2.2.3.1 PufX -- 2.2.3.2 Protein W -- 2.2.3.3 The Gamma Subunit -- 2.2.4 Architectures of Core Complexes -- 2.3 Cofactors and Pigments -- 2.3.1 Carotenoids -- 2.3.2 Bacteriochlorophylls -- 2.3.3 Bacteriopheophytins -- 2.4 Cofactor-Cofactor and Protein-Protein Interactions -- 2.5 Assembly of Complexes -- 2.6 Spectroscopic Properties of Light-Harvesting Complexes -- 2.7 Cytochrome bc1 -- 2.8 ATP Synthase -- 2.9 Cytochrome c2 -- 3 Organisation and Assembly of Photosynthetic Membranes -- 3.1 Common Features of the Photosynthetic Membranes -- 3.2 Functional Importance of Photosynthetic Membrane Organisation -- 4 Energy Transfer -- 4.1 Transfer of Excitation Energy -- 4.2 Charge Separation in the RC -- 4.3 Electron Transfer in Cytochrome c2 -- 4.4 Modified Q Cycle -- 4.5 Proton Translocation and ATP Synthase -- 5 Calvin-Benson-Bassham Cycle -- References -- Redox Potentials of Quinones in Aqueous Solution: Relevance to Redox Potentials in Protein Environments -- 1 Introduction -- 2 Em for Quinones in Water and in Protein Environments. , 3 Alternative Approach for Calculating Em of Quinones and Other Cofactors -- References -- Photosynthesis in Chlamydomonas reinhardtii: What We Have Learned So Far? -- 1 Introduction -- 2 Photosynthetic Complexes Biogenesis and Regulation -- 2.1 Photosynthetic Genes Expression -- 2.2 Photosynthetic Pigments Biosynthesis -- 2.3 PSI Biogenesis and Functional Regulation -- 2.4 PSII Biogenesis and Functional Regulation -- 2.5 Photosynthetic Electron Transport -- 3 Concluding Remarks -- References -- Part II: Photosynthesis and the Environment -- Photosynthetic Performances of Marine Microalgae Under Influences of Rising CO2 and Solar UV Radiation -- 1 Introduction -- 2 Effects of Increasing CO2 Concentration and Declining pH -- 3 UV and Its Effect on Marine Photosynthetic Carbon Fixation -- 4 The Combined Effects of OA and UV Radiation -- 5 Perspectives -- References -- Acquisition of Inorganic Carbon by Microalgae and Cyanobacteria -- 1 Introduction -- 2 Rubisco and the Calvin Cycle Are Central Features of C Acquisition in All Cyanobacteria and Microalgae -- 3 Rubisco Also Has an Oxygenase Activity Which Leads to Inefficiencies in C Assimilation -- 4 Cyanobacteria and Microalgae Possess Mechanisms That Minimise the Effects of Unfavourable Rubisco Kinetics and Photorespiration -- 4.1 Evolution of Rubiscos More Favourable to the  Carboxylase Activity -- 4.2 CO2 Concentrating Mechanisms Increase CO2:O2 at the Rubisco Active Site -- 4.2.1 Biochemical CCMs -- 4.2.2 Biophysical CCMs -- 4.2.3 The Extent of CCM Activity -- 4.3 Heterotrophic Carbon Assimilation -- 4.3.1 Dark Carbon Fixation -- References -- Circadian Clocks in Cyanobacteria -- 1 Introduction -- 2 Kai-Based Oscillator -- 3 Synchronization with the Environment -- 4 Coordination of Cellular Activities -- 5 Conclusions -- References -- Iron Deficiency in Cyanobacteria. , 1 The Challenges of Iron Deficiency in Cyanobacteria -- 2 The Strategies for Adaptation to Iron Deficiency in Cyanobacteria -- 2.1 Retrenchment -- 2.2 Compensation -- 2.3 Acquisition -- 3 Important Iron-Deficiency Proteins in Cyanobacteria -- 3.1 IsiA -- 3.2 Fur -- 3.3 IdiA -- 3.4 PfsR -- 4 Conclusion -- References -- Adaptive Mechanisms of the Model Photosynthetic Organisms, Cyanobacteria, to Iron Deficiency -- 1 The Feature of Cyanobacterial Cell Wall -- 2 The Distribution of Cyanobacteria and Its Significance in Global Primary Productivity -- 3 The Indissoluble Bond Between Cyanobacteria and Iron -- 4 Existence Form and Availability of Iron -- 5 The Physiological Functions of Iron in Cyanobacteria -- 6 Iron Limitation Hypothesis -- 7 Physiological Response of Cyanobacteria to Iron Limitation -- 7.1 Photosynthesis -- 7.2 Respiration -- 7.3 Nitrogen Fixation -- 7.4 Oxidative Stress -- 8 Adaptative Strategies of Cyanobacteria to Iron Limitation -- 8.1 Biosynthesis and Secretion of Iron Chelators -- 8.1.1 Types of Siderophores -- 8.1.2 Siderophore Biosynthesis and Phylogenetical Distribution in Cyanobacteria -- 8.1.3 Siderophore Secretion and Uptake in Cyanobacteria -- 8.2 Induction of Protective Proteins Such as IsiA to Avoid Photooxidation of Photosystem I -- 8.3 Decrease Iron Demand and Maintain a Lower Metabolic Level -- 8.4 Increase of Iron Uptake Capacity and Balance Active and Passive Transport -- 8.4.1 Active Transport of Siderophore-Chelated Iron and Unchelated, Inorganic Iron (Fe′) -- 8.4.2 Passive Diffusion: Uptake of Inorganic Free Iron -- 8.5 Optimize Ferrous and Ferric Iron Transport -- 8.6 Development of Special Cell Surface Structure to Facilitate Iron Adhesion and Uptake -- 8.7 Reduce the Cell Size and Increase Specific Surface Area to Facilitate Passive Diffusion of Iron -- 9 Signal Transduction of Iron Deficiency in Cyanobacteria. , 9.1 The Global Regulator Fur -- 9.2 PfsR -- 9.3 Noncoding RNA -- 10 Outlooks on Cyanobacterial Adaptive Strategies to Marine Iron Limitation -- References -- The Roles of sRNAs in Regulating Stress Responses in Cyanobacteria -- 1 Introduction -- 2 Methods for Studying the Noncoding Transcriptomes of Cyanobacteria and Identifying Stress-Responsive sRNAs -- 3 sRNAs Involved in Stress Response Pathways -- 3.1 Light-Dependent Stress -- 3.2 Nitrogen Stress -- 3.3 Iron Homeostasis -- 4 Conclusions and Perspectives -- References -- Part III: Artificial Photosynthesis and Light-driven Biofactory -- Mimicking the Mn4CaO5-Cluster in Photosystem II -- 1 Introduction -- 2 Structure of the OEC -- 3 Mechanism for the Water-Splitting Reaction in the OEC -- 4 Challenge for the Synthesis of the OEC in Laboratory -- 5 Closer Mimicking of the OEC -- 6 Implications for the Mechanism of the Water-Splitting Reaction in OEC -- 7 Conclusion -- References -- Photosynthetic Improvement of Industrial Microalgae for Biomass and Biofuel Production -- 1 Introduction -- 2 Genetic and Biological Engineering of Photosynthesis in Microalgae -- 2.1 Photoprotection Mechanisms and Antenna Size -- 2.2 Manipulation of Antenna and Its Size -- 2.3 Engineering of PS Pigments -- 2.4 Delivery of Heterologous Proteins to the Plastids of Target Species -- 3 Photosynthesis and Lipids -- 3.1 Classification of Lipids -- 3.2 Storage Lipids in Microalgae: Triacylglycerol -- 3.3 Functional Lipids in Microalgae -- 3.3.1 Membrane Lipids for Photosynthesis -- 3.3.2 Polyunsaturated Fatty Acids (PUFAs) for Plant Defense -- 3.3.3 Carotenoids for Stress Response and Photosynthesis -- References -- Self-Assembly, Organisation, Regulation, and Engineering of Carboxysomes: CO2-Fixing Prokaryotic Organelles -- 1 Bacterial Microcompartments -- 1.1 The BMC Shells -- 1.2 The BMC Cargo Enzymes. , 2 CO2-Concentrating Mechanisms and CO2 Uptake Systems.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-12-05
    Description: The Arctic is warming much faster than the global average. This is known as Arctic Amplification and is caused by feedbacks in the local climate system. In this study, we explore a previously proposed hypothesis that an associated wind feedback in the Barents Sea could play an important role by increasing the warm water inflow into the Barents Sea. We find that the strong recent decrease in Barents Sea winter sea ice cover causes enhanced ocean‐atmosphere heat flux and a local air temperature increase, thus a reduction in sea level pressure and a local cyclonic wind anomaly with eastward winds in the Barents Sea Opening. By investigating various reanalysis products and performing high‐resolution perturbation experiments with the ocean and sea ice model FESOM2.1, we studied the impact of cyclonic atmospheric circulation changes on the warm Atlantic Water import into the Arctic via the Barents Sea and Fram Strait. We found that the observed wind changes do not significantly affect the warm water transport into the Barents Sea, which rejects the wind‐feedback hypothesis. At the same time, the cyclonic wind anomalies in the Barents Sea increase the amount of Atlantic Water recirculating westwards in Fram Strait by a downslope shift of the West Spitsbergen Current, and thus reduce Atlantic Water reaching the Arctic basin via Fram Strait. The resulting warm‐water anomaly in the Greenland Sea Gyre drives a local anticyclonic circulation anomaly.
    Description: Plain Language Summary: The Barents Sea has been experiencing a rapid decrease in its winter sea ice extent during the last 30 years. The loss of sea ice creates new areas where, in winter, the relatively warm ocean loses heat to the cold atmosphere. As warm air rises, the warming reduces the sea level air pressure, changing the atmospheric circulation to develop a local anticlockwise wind system centered over the northern Barents Sea. The associated eastward winds in the Barents Sea Opening and southeastward winds in Fram Strait affect how warm water from the North Atlantic moves toward the Arctic. There has been a long debate on whether this wind anomaly can increase the warm Atlantic Water transport into the Barents Sea and thus cause a positive feedback mechanism for further reducing the sea ice through melting. We find that the observed atmospheric circulation changes have no significant impact on the Barents Sea warm water inflow and thus reject the wind feedback as a strong player in contributing to Arctic Amplification. However, strong anomalous southeastward winds in Fram Strait and the northern Nordic Seas cause a southward shift of the warm Atlantic Water recirculation and reduce its flow toward the Arctic.
    Description: Key Points: A hypothesis that a wind feedback contributes to Arctic Amplification is rejected by performing dedicated wind perturbation simulations. Winter sea ice retreat in the northern Barents Sea causes anomalous cyclonic winds by locally enhancing ocean heat loss. Anomalous cyclonic winds result in less Atlantic Water transport through Fram Strait.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: North‐German Supercomputing Alliance
    Description: https://github.com/FESOM/fesom2
    Description: https://doi.org/10.7265/N5K072F8
    Description: https://doi.org/10.5065/D6HH6H41
    Description: https://doi.org/10.5065/D6WH2N0S
    Description: https://github.com/FESOM/pyfesom2
    Description: https://doi.org/10.5281/zenodo.7458143
    Keywords: ddc:551 ; Barents Sea ; Arctic Amplification ; feedback ; Atlantic water ; modeling ; Fram Strait
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-30
    Description: Mesoscale eddies are important for many aspects of the dynamics of the Arctic Ocean. These include the maintenance of the halocline and the Atlantic Water boundary current through lateral eddy fluxes, shelf-basin exchanges, transport of biological material and sea ice, and the modification of the sea-ice distribution. Here we review what is known about the mesoscale variability and its impacts in the Arctic Ocean in the context of an Arctic Ocean responding rapidly to climate change. In addition, we present the first quantification of eddy kinetic energy (EKE) from moored observations across the entire Arctic Ocean, which we compare to output from an eddy resolving numerical model. We show that EKE is largest in the northern Nordic Seas/Fram Strait and it is also elevated along the shelfbreak of the Arctic Circumpolar Boundary Current, especially in the Beaufort Sea. In the central basins it is 100-1000 times lower. Except for the region affected by southward sea-ice export south of Fram Strait, EKE is stronger when sea-ice concentration is low compared to dense ice cover. Areas where conditions typical in the Atlantic and Pacific prevail will increase. Hence, we conclude that the future Arctic Ocean will feature more energetic mesoscale variability. This table provides (eddy) kinetic energy in the Arctic Ocean calculated from moorings and a numerical model across the entire record and averaged over certain conditions (seasons, ice concentration). The calculations are explained in the manuscript (Eddies and the distribution of eddy kinetic energy in the Arctic Ocean). The used mooring data was compiled from six different sources as listed below and identified in the table based on the Source ID.
    Keywords: 250_MOOR; 293-S1_MOOR; 293-X1_MOOR; 293-X2_MOOR; 293-X3_MOOR; 295-S2_MOOR; A01_MOOR; AK1-1_MOOR; AK2-1_MOOR; AK3-1_MOOR; AK4-1_MOOR; AK5-1_MOOR; AK6-1_MOOR; AK7-1_MOOR; Akademik Tryoshnikov; AM1-91_MOOR; AM2-91_MOOR; AO1-92_MOOR; Arctic Ocean; ARK-XIV/2; ARK-XVIII/1; ARK-XXIX/3; ARK-XXX/1.2; ARK-XXX/2, GN05; ARK-XXXI/4; ATWAIN200_MOOR; AWI_PhyOce; AWI401-1_MOOR; AWI402-1_MOOR; AWI403-1_MOOR; AWI403-2_MOOR; AWI404-1_MOOR; AWI406-1_MOOR; AWI410-2_MOOR; AWI411-2_MOOR; AWI412-4_MOOR; AWI413-4_MOOR; AWI415-1_MOOR; AWI416-1_MOOR; AWI417-1_MOOR; AWI418-1_MOOR; BaffinBay_2_MOOR; BaffinBay_MOOR; BarrowSt_81_MOOR; BarrowSt_C_MOOR; BarrowSt_N_MOOR; BarrowSt_S_MOOR; BarrowSt_SC_MOOR; BarrowSt_Ss_MOOR; BG_a_MOOR; BG_b_MOOR; BG_c_MOOR; BG_d_MOOR; BI3_MOOR; BR1_MOOR; BR2_MOOR; BR3_MOOR; BRA_MOOR; BRB_MOOR; BRG_MOOR; BRK_MOOR; BS2_MOOR; BS3_MOOR; BS4_MOOR; BS5_MOOR; BS6_MOOR; BSO1_MOOR; BSO2_MOOR; BSO3_MOOR; BSO4_MOOR; BSO5_MOOR; C1_MOOR; C2_MOOR; C3_MOOR; C4_MOOR; C5_MOOR; C6_MOOR; CA04_MOOR; CA05_MOOR; CA06_MOOR; CA07_MOOR; CA08_MOOR; CA10_MOOR; CA11_MOOR; CA12_MOOR; CA13_MOOR; CA15_MOOR; CA16_MOOR; CA20_MOOR; CM-1_MOOR; CM-2_MOOR; CS1_MOOR; CS-1A_MOOR; CS2_MOOR; CS-2A_MOOR; CS3_MOOR; CS-3A_MOOR; CS4_MOOR; CS5_MOOR; Depth, bottom/max; Depth, top/min; DEPTH, water; DS_TUBE8_MOOR; Duration; EA1_MOOR; EA2_MOOR; EA3_MOOR; EA4_MOOR; EBC_MOOR; eddies; eddy kinetic energy; Eddy kinetic energy, 2000-2010; Eddy kinetic energy, 2010-2020; Eddy kinetic energy, at depth; Eddy kinetic energy, autumn; Eddy kinetic energy, ice; Eddy kinetic energy, mean; Eddy kinetic energy, model bandpass; Eddy kinetic energy, model online; Eddy kinetic energy, no ice; Eddy kinetic energy, some ice; Eddy kinetic energy, spring; Eddy kinetic energy, summer; Eddy kinetic energy, winter; EGN-1; EGS-1; EGS1-2; EGS2-1; EGS4-1; ELEVATION; F10-1; F1-1; F11_MOOR; F11-2; F12_MOOR; F12-1; F13_MOOR; F13-1; F14_MOOR; F14-1; F15-1; F16-1; F17_MOOR; F2-1; F3-1; F4-1; F5-1; F6-1; F7-1; F8-1; F9-1; FB2b_MOOR; FB6_MOOR; First year of observation; FRAM; FRontiers in Arctic marine Monitoring; FRS782_MOOR; FSC1_MOOR; FSC2_MOOR; FSC3_MOOR; FSC4_MOOR; GS-3_2_MOOR; HG-IV-S-1; High-frequency kinetic energy; HSNE60_MOOR; HudsonBay_MOOR; HudsonStrait_MOOR; I1_MOOR; I2_MOOR; I3_MOOR; IdF1-1; IdF2-1; IdF3-1; IdF4-1; ISWRIG_MOOR; Karasik-2015; KS02_MOOR; KS04_MOOR; KS06_MOOR; KS08_MOOR; KS10_MOOR; KS12_MOOR; KS14_MOOR; L97; LA97/2; Lance; Last year of observation; LATITUDE; LM3_MOOR; LONGITUDE; Low-frequency kinetic energy; M11_MOOR; M12_MOOR; M13_MOOR; M14_MOOR; M15_MOOR; M16_MOOR; M3_MOOR; M5_MOOR; M6_MOOR; M9a_MOOR; MA2B_MOOR; MB1B_MOOR; MB2B_MOOR; MB4B_MOOR; Mean kinetic energy; MOOR; Mooring; Mooring (long time); MOORY; N198_2_MOOR; N198_MOOR; N525_MOOR; N541_MOOR; NABOS_2015_AK1-1, NABOS_2018_AK1-1; NABOS_2015_AK2-1, NABOS_2018_AK2-1; NABOS_2015_AK3-1, NABOS_2018_AK3-1; NABOS_2015_AK4-1, NABOS_2018_AK4-1; NABOS_2015_AK5-1, NABOS_2018_AK5-1; NABOS_2015_AK6-1,NABOS_2018_AK6-1; NABOS_2015_AK7-1, NABOS_2018_AK7-1; NABOS, AT2015; NABOS 2015; Nansen-2015; North Greenland Sea; NPEO_MOOR; NWNA_MOOR; NWNB_MOOR; NWNC_MOOR; NWND_MOOR; NWNE_MOOR; NWNF_MOOR; NWNG_MOOR; NWSB_MOOR; NWSD_MOOR; NWSE_2_MOOR; NWSE_MOOR; OLIK-1_MOOR; OSL2a_MOOR; OSL2f_MOOR; Physical Oceanography @ AWI; Polarstern; PS100; PS100/039-2, PS114_25-1,ARKR02-01; PS100/045-1, PS114_29-2; PS100/047-1, PS114_40-2; PS100/053-1, PS114_36-1; PS100/073-1, PS109_20-1; PS100/106-1, PS114_23-2; PS100/142-1, PS109_139-1; PS100/180-2, PS109_111-1; PS100/181-1, PS109_112-1; PS100/182-1, PS109_113-1; PS100/183-1, PS109_114-1; PS109; PS109_133-1, PS114_52-1; PS109_138-2, PS114_53-1; PS109_148-1, PS114_60-2; PS114; PS52; PS62; PS94; PS99/070-1, PS107_3-1; PS99.2; R071_MOOR; R1-1; R2-1; R290_MOOR; R3-1; R333_MOOR; R356_MOOR; R4-1; R5-1; Reference/source; SS-5_MOOR; StA_MOOR; Station label; Stor_MOOR; Total kinetic energy; V-319_MOOR; Velocity, east; Velocity, north; Vilk_MOOR; WBC_MOOR; WG1_MOOR; WG15_MOOR; WG4_MOOR; Wunsch-NN1_MOOR; Wunsch-NN2_MOOR; Y1_MOOR; Y2_MOOR; YP_MOOR
    Type: Dataset
    Format: text/tab-separated-values, 4806 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Geoscientific Model Development, Copernicus Publications, 16(17), pp. 5153-5178, ISSN: 1991-959X
    Publication Date: 2023-09-19
    Description: Numerical simulations employing prognostic sta- ble water isotopes can not only facilitate our understanding of hydrological processes and climate change but also al- low for a direct comparison between isotope signals obtained from models and various archives. In the current work, we describe the performance and explore the potential of a new version of the Earth system model AWI-ESM (Alfred We- gener Institute Earth System Model), labeled AWI-ESM-2.1- wiso, in which we incorporated three isotope tracers into all relevant components of the water cycle. We present here the results of pre-industrial (PI) and mid-Holocene (MH) simula- tions. The model reproduces the observed PI isotope compo- sitions in both precipitation and seawater well and captures their major differences from the MH conditions. The sim- ulated relationship between the isotope composition in precipitation (d18Op) and surface air temperature is very similar between the PI and MH conditions, and it is largely consis- tent with modern observations despite some regional model biases. The ratio of the MH–PI difference in δ18Op to the MH–PI difference in surface air temperature is comparable to proxy records over Greenland and Antarctica only when summertime air temperature is considered. An amount effect is evident over the North African monsoon domain, where a negative correlation between δ18Op and the amount of pre- cipitation is simulated. As an example of model applications, we studied the onset and withdrawal date of the MH West African summer monsoon (WASM) using daily variables. We find that defining the WASM onset based on precipitation alone may yield erroneous results due to the substantial daily variations in precipitation, which may obscure the dis- tinction between pre-monsoon and monsoon seasons. Com- bining precipitation and isotope indicators, we suggest in this work a novel method for identifying the commencement of the WASM. Moreover, we do not find an obvious difference between the MH and PI periods in terms of the mean onset of the WASM. However, an advancement in the WASM with- drawal is found in the MH compared to the PI period due to an earlier decline in insolation over the northern location of Intertropical Convergence Zone (ITCZ).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-02
    Description: Satellite observations covering the last four decades reveal an ocean warming pattern resembling the negative phase of the Pacific Decadal Oscillation. This pattern has therefore been widely interpreted as a manifestation of natural climate variability. Here, we re-examine the observed warming pattern and find that the predominant warming over the subtropical oceans, while mild warming or even cooling over the subpolar ocean, is dynamically consistent with the convergence and divergence of surface water. By comparison of observations, paleo-reconstructions, and model simulations, we propose that the observed warming pattern is likely a short-term transient response to the increased CO2 forcing, which only emerges during the early stage of anthropogenic warming. On centennial to millennial timescales, the subpolar ocean warming is expected to exceed the temporally dominant warming of the subtropical ocean. This delayed but amplified subpolar ocean warming has the potential to reshape the ocean-atmosphere circulation and threaten the stability of marine-terminating ice sheets.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-08-08
    Description: 〈jats:p〉Abstract. The ocean mixed layer is the interface between the ocean interior and the atmosphere or sea ice and plays a key role in climate variability. It is thus critical that numerical models used in climate studies are capable of a good representation of the mixed layer, especially its depth. Here we evaluate the mixed-layer depth (MLD) in six pairs of non-eddying (1∘ grid spacing) and eddy-rich (up to 1/16∘) models from the Ocean Model Intercomparison Project (OMIP), forced by a common atmospheric state. For model evaluation, we use an updated MLD dataset computed from observations using the OMIP protocol (a constant density threshold). In winter, low-resolution models exhibit large biases in the deep-water formation regions. These biases are reduced in eddy-rich models but not uniformly across models and regions. The improvement is most noticeable in the mode-water formation regions of the Northern Hemisphere. Results in the Southern Ocean are more contrasted, with biases of either sign remaining at high resolution. In eddy-rich models, mesoscale eddies control the spatial variability in MLD in winter. Contrary to a hypothesis that the deepening of the mixed layer in anticyclones would make the MLD larger globally, eddy-rich models tend to have a shallower mixed layer at most latitudes than coarser models do. In addition, our study highlights the sensitivity of the MLD computation to the choice of a reference level and the spatio-temporal sampling, which motivates new recommendations for MLD computation in future model intercomparison projects. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-08-08
    Description: 〈jats:p〉Arctic Ocean gateway fluxes play a crucial role in linking the Arctic with the global ocean and affecting climate and marine ecosystems. We reviewed past studies on Arctic–Subarctic ocean linkages and examined their changes and driving mechanisms. Our review highlights that radical changes occurred in the inflows and outflows of the Arctic Ocean during the 2010s. Specifically, the Pacific inflow temperature in the Bering Strait and Atlantic inflow temperature in the Fram Strait hit record highs, while the Pacific inflow salinity in the Bering Strait and Arctic outflow salinity in the Davis and Fram straits hit record lows. Both the ocean heat convergence from lower latitudes to the Arctic and the hydrological cycle connecting the Arctic with Subarctic seas were stronger in 2000–2020 than in 1980–2000. CMIP6 models project a continuing increase in poleward ocean heat convergence in the 21st century, mainly due to warming of inflow waters. They also predict an increase in freshwater input to the Arctic Ocean, with the largest increase in freshwater export expected to occur in the Fram Strait due to both increased ocean volume export and decreased salinity. Fram Strait sea ice volume export hit a record low in the 2010s and is projected to continue to decrease along with Arctic sea ice decline. We quantitatively attribute the variability of the volume, heat, and freshwater transports in the Arctic gateways to forcing within and outside the Arctic based on dedicated numerical simulations and emphasize the importance of both origins in driving the variability.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Springer Science and Business Media LLC
    In:  EPIC3Ocean Dynamics, Springer Science and Business Media LLC, 73(3-4), pp. 219-230, ISSN: 1616-7341
    Publication Date: 2023-06-23
    Description: We develop a single-class ice and snow model embedded inside a 3D hydrodynamic model on unstructured grids and apply it to lake studies using highly variable mesh resolution. The model is able to reasonably capture the ice fields observed in both small and large lakes. For the first time, we attempt simulation of ice processes on very small scales (~ 1 m). Physically sound results are obtained at the expense of moderately increased computational cost, although more rigorous validation nearshore is needed due to lack of observation. We also outline challenges on developing new process-based capabilities for accurately simulating nearshore ice.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...