GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Highlights • Temporally close-spaced double eruption within a couple of hundreds of years. • Magmas are variably tapped from zoned magma chambers during eruptions due to changing magma discharge rates and/or vent migration. • Eruptions started with a series of fallouts featuring stable eruption columns followed by fluctuating and partially collapsing eruption columns. • Eruptive volumes sum up to a total of 25.6 km3 and 40.5 km3 tephra volume, eruption column heights have been between 20–33 km. • Potential hazards from similar sized eruptions around Coatepeque Caldera are indicated even in the distal regions around San Salvador. Abstract The Coatepeque volcanic complex in El Salvador produced at least four Plinian eruptions within the last 80 kyr. The eruption of the 72 ka old Arce Tephra formed the Coatepeque Caldera and was one of the most powerful explosive eruptions in El Salvador. Hitherto it was thought that the Arce tephra had been emplaced only by one, mostly Plinian, eruptive event that ended with the deposition of a thick ignimbrite. However, our stratigraphic, geochemical, and zircon data reveal a temporally closely- spaced double eruption separated by a gap of only a couple of hundred years, and we therefore distinguish Lower and Upper Arce Tephras. Both eruptions produced in the beginning a series of fallout units generated from fluctuating eruption columns and turning wind directions. The final phase of the Upper Arce eruption produced surge deposits by several eruption column collapses before the terminal phase of catastrophic ignimbrite eruption and caldera collapse. Mapping of the individual tephra units including the occurrences of distal marine and lacustrine ash layers in the Pacific Ocean, the Guatemalan lowlands and the Caribbean Sea, result in 25.6 km3 tephra volume, areal distribution of 4 × 105 km2 and eruption column heights between 20–33 km for the Lower Arce eruption, and 40.5 km3 tephra volume, including 10 km3 for the ignimbrite, distributed across 6 × 105 km2 and eruption column heights of 23–28 km for the Upper Arce eruption. These values and the detailed eruptive sequence emphasize the great hazard potential of possible future highly explosive eruptions at Coatepeque Caldera, especially for this kind of double eruption.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Highlights • Masaya caldera is an unusual basaltic caldera in that it formed by voluminous magma extraction during explosive eruptions. We identify the nature, age and volume of these three eruptions of which the first, emplacing the San Antonio tephra, was by far most voluminous. • The by far largest fraction of the 9 km3 DRE erupted volume of this tephra was discharged during a Plinian eruption phase, which was bracketed by phreatomagmatic eruptions. We demonstrate that water contents measured in melt inclusions equilibrated during residence at shallow level shortly before eruption strongly underestimate original water contents during differentiation at higher pressure. We argue that the large fraction of exsolved H2O together with buoyancy pressure from connection to the deeper reservoir drove the eruptive high mass flux needed for the Plinian eruption phase. Masaya is unusual for a basaltic caldera because it formed by piston-subsidence in response to large-volume magma withdrawal by highly explosive eruptions, i.e. in a fashion typical of silicic calderas. The first and most voluminous of the three explosive eruptions formed the 6 ka old basaltic San Antonio Tephra (SAT). This eruption is also unusual in that most of the 9 km3 DRE basaltic magma was discharged by a plinian eruption. The subsequent eruptions of the basaltic Masaya Triple Layer (MTL, 2.1 ka) and the Masaya Tuff/Ticuantepe Lapilli (MT-TIL, 1.9 ka) each discharged 2 km3 DRE magma and enlarged the Masaya caldera. The SAT consists of a lower sequence of alternating scoria lapilli and ash layers, interpreted as an alternation between more or less phreatomagmatically influenced fallout events. These are followed by two prominent well-sorted lapilli layers: the first one formed by a climactic plinian eruption whose column height reached 21–29 km and discharged most of the total erupted mass including about 35 Mt. SO2. The second, lithic-rich lapilli layer probably formed by a phreatoplinian event when partial collapse of the magma chamber roof initiated increasing magma-water interaction which ultimately formed the upper sequence of phreatomagmatic cross-bedded surge deposits, accretionary lapilli-rich tuffs and a final fallout of dense lapilli. Phreatomagmatic activity may have been related to disruption of a hydrothermal system reflected in hydrothermally altered lithics, and/or by the caldera floor subsiding closer to the groundwater table. The bulk-rock chemical composition of the SAT is basaltic but the bimodal glass compositions demonstrate mixing of a basaltic with an andesitic melt probably in the conduit during eruption. The SAT basalt differentiated in a reservoir near the MOHO at 20 km depth by fractional crystallization of olivine, plagioclase, and minor clinopyroxene forming a tholeiitic fractionation trend. Minor intermediate-An plagioclase crystallized from the basaltic melt at H2O concentrations of about 2 wt% as measured by FTIR in melt inclusions. However, a key observation is that the melt inclusions are not in equilibrium with the high-An plagioclases hosting them. Re-equilibration of the inclusions requires initially higher water contents (about 5–6 wt%) which also fits the high Ba/La ~ 80 indicating input from the strongly hydrated subducting slab. Therefore, while the SAT magma evolved under hydrous conditions at depth, it was then stored at shallow level long enough to adjust to the low saturation pressure and to precipitate some intermediate-An plagioclase but still preserving its high temperature (around 1100 °C) and phenocryst-poor composition. Large overpressure due to connection to the deep-seated reservoir and water degassing during ascent limited the storage time at shallow level and drove the unusually intense and voluminous plinian-style eruption that facilitated piston-type collapse of the chamber roof.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Defining a precise timeline for past eruptions from explosive volcanoes in continental arcs is imperative to forecast future hazards and mitigate volcanic disasters in these often densely populated regions. However, establishing reliable ages for Quaternary eruptions in the Central American Volcanic Arc has been challenging due to the common lack or alteration of suitable K-rich phases for 40Ar/39Ar geochronology, but also from their position in time beyond the reach of 14C dating. This especially holds for the active Amatitlán caldera in Guatemala, from which at least six explosive silicic eruptions have produced tephra blanketing neighboring regions that are today inhabited by millions of people. Zircon, a common datable accessory mineral in Amatitlán caldera magmas, is used here to retrieve eruption ages by applying the novel zircon double-dating method (ZDD) that integrates 238U–230Th disequilibrium dating and (U–Th)/He thermochronology. This approach yielded the first-ever radioisotopic ages of 24 ± 3 ka and 48 ± 6 ka (1σ), respectively, of two of Amatitlán caldera's most recent eruptions (J-tephra and E-tephra). Remarkably, both zircon crystallization and ZDD eruption ages for the older and voluminous T-tephra and L-tephra units significantly post-date existing plagioclase 40Ar/39Ar dates by ca. 26 and 70 kyr, respectively. The ZDD eruption age for T-tephra is 93 ± 4 ka, whereas zircon crystallization ages for L-tephra yield a maximum model eruption age of ca. 124 ka. The strong eruption age divergence between ZDD and plagioclase 40Ar/39Ar dating argues for the presence of inherited or xenocrystic plagioclase in Amatitlán caldera eruptive products. Statistical analysis based on the updated eruptive history suggests a recurrence interval of ca. 17 kyr, which is significantly shorter than previously estimated. The new age data, thus, suggest a more frequent eruptive activity of Amatitlán caldera than formerly thought and underscores the necessity to better understand the current underlying magmatic system and to constrain its past eruptive history more precisely.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Volcanic islands export clastic material to their surrounding oceans by explosive eruptions, lava emissions, biogenic production on their shelves, and failure of their slopes, amongst other processes. This raises the question of whether geological events (in particular, eruptions and landslides) can be detected offshore and dated, and whether any relationships (for example, with climate changes) can be revealed using sediment cores. The volcanically active central Azorean islands (Faial, Pico, São Jorge, and Terceira), with their neighboring submarine basins, are potentially good candidates for such an analysis. Here, chronostratigraphies of four gravity cores collected amongst the islands are constructed based on twelve radiocarbon dates and two dates derived by geochemically correlating primary volcaniclastic turbidites with ignimbrites on Faial and Terceira Islands. Age-depth models are built from the hemipelagic intervals to estimate individual turbidite dates. Volumes of turbidites are modeled by multiplying basin areas with bed thickness, allowing for various turbidite thinning rates and directions. The volumes of landslide-generated turbidites are only comparable with the largest volumes of their adjacent upper-slope submarine landslide valleys; therefore, such turbidites in the cores likely derive from these largest landslides. Emplacement intervals between turbidites originating from both landslides and pyroclastic density currents are found to be mostly a few thousand years. Frequencies of landslide-generated turbidites and hemipelagic sedimentation rates were both highest in the past 8 k.y. compared to preceding periods up to 50 k.y. High hemipelagic sedimentation rates are interpreted to be related to sea-level rise, allowing more shelf bioproduction and release of particles by coastal erosion. The coincident increased frequencies of submarine landslides may also be associated with the increased sediment supply from the islands, resulting in a more rapid build-up of unstable sediments on submarine slopes. Notably, the emplacement frequencies of turbidites of pyroclastic density current origins do not suggest the decreased eruption frequency toward the Holocene that has been found elsewhere.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: An international, multidisciplinary research group is proposing the “NICA-BRIDGE” drilling project, within the framework of the International Continental Scientific Drilling Program (ICDP). The project goal is to conduct scientific drilling in Lake Nicaragua and Lake Managua (Nicaragua, Central America) to obtain long lacustrine sediment records to (a) extend the neotropical paleoclimate record back to the Pliocene, making it one of the longest continental tropical climate archives in the world, and to (b) provide geological data on the long-term complex interplay among tectonics, volcanism, sea-level dynamics, climate change, and biosphere. The lakes are the two largest in Central America, and they are located in a trench-parallel half graben that hosts the volcanic front, which developed during or prior to the Pliocene, as a consequence of subduction-related tectonic activity. The lakes are uniquely suited for multidisciplinary scientific investigation as their long, con- tinuous sediment records (several Myr) will facilitate the study of (1) terrestrial and marine basin development at the southern Central American margin, (2) alternating lacustrine and marine environments in response to tec- tonic and climatic changes, (3) the longest record of tropical climate proxies, (4) the evolution of (and transition between) the Miocene to Pliocene/Pleistocene and Pleistocene to present volcanic arcs, which were separated by slab rollback, (5) the significance of the lakes as hot spots for endemism, and (6) the Great American Biotic Interchange at this strategic location, i.e., the N–S and reverse migration of fauna after the land bridge between the Americas was established. The planned ICDP project offers an opportunity to explore these topics through continent-based seismolog- ical, volcanological, paleoclimatological, paleoecological, and paleoenvironmental studies, combined with an International Ocean Discovery Program (IODP) drill project to explore its oceanic continuation. In preparation of this drilling project, an ICDP workshop was held in Montelimar, Nicaragua, on 2–5 March 2020 to develop drilling strategies and refine scientific questions, objectives, and hypotheses. The workshop was organized and hosted by the principal investigators and the Instituto Nicaragüense de Estudios Territoriales (INETER), with funding from the ICDP. Forty-five researchers from 12 countries participated in the workshop, including representatives from ICDP. During the workshop, previous research data on the study lakes, including new recent surveys, were reviewed, and a three-phase strategy for the proposed research was developed. The aim of Phase 0 is to complement the pre-site surveys where we identified the need for further data. In Phase I, with ICDP support, we will obtain sediment cores ∼ 100 m long, which will allow us to investigate many of the scientific questions. Based on the data from those drill cores, coring locations will be identified for a future Phase II, which we envisage as a combined ICDP/IODP project to collect deep drill cores in the lakes and the offshore Sandino Basin in order to extend Phase I results to much deeper time. The Sandino Basin is the oceanic continuation of the depression in which the studied lakes are located, and complementary marine drilling will improve the understanding of the evolution of this complex margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The climactic Los Chocoyos (LCY) eruption from Atitlán caldera (Guatemala) is a key chronostratigraphic marker for the Quaternary period given the extensive distribution of its deposits that reached both the Pacific and Atlantic Oceans. Despite LCY tephra being an important marker horizon, a radioisotopic age for this eruption has remained elusive. Using zircon (U–Th)/He geochronology, we present the first radioisotopically determined eruption age for the LCY of 75 ± 2 ka. Additionally, the youngest zircon crystallization 238U–230Th rim ages in their respective samples constrain eruption age maxima for two other tephra units that erupted from Atitlán caldera, W-Fall (130 +16/−14 ka) and I-Fall eruptions (56 +8.2/−7.7 ka), which under- and overlie LCY tephra, respectively. Moreover, rim and interior zircon dating and glass chemistry suggest that before eruption silicic magma was stored for 〉80 kyr, with magma accumulation peaking within ca. 35 kyr before the LCY eruption during which the system may have developed into a vertically zoned magma chamber. Based on an updated distribution of LCY pyroclastic deposits, a new conservatively estimated volume of ~1220 ± 150 km3 is obtained (volcanic explosivity index VEI 〉 8), which confirms the LCY eruption as the first-ever recognized supereruption in Central America.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: The Milos, Christiana-Santorini-Kolumbo (CSK) and Kos-Yali-Nisyros (KYN) volcanic complexes of the Aegean Volcanic Arc have repeatedly produced highly explosive eruptions from at least ∼360 ka into historic times and still show recent unrest. We present the marine tephra record from an array of 50, up to 7.4 m long, sediment cores along the arc collected in 2017 during RV Poseidon cruise POS513, which complements earlier work on distal to ultra-distal eastern Mediterranean sediment cores. A unique set of glass-shard trace element (LA-ICPMS) compositions complements our major element (EMP) data on 220 primary ash layers and 40 terrestrial samples to support geochemical fingerprinting for correlations with 19 known tephras from all three volcanic complexes and with the 39 ka Campanian Ignimbrite from the Campi Flegrei, Italy. The correlations include eleven eruptions from CSK (Kameni, Kolumbo 1650, Minoan, Cape Riva, Cape Tripiti, Upper Scoriae 1 and 2, Middle Pumice, Cape Thera, Lower Pumice, Cape Therma 3). We identify a previously unknown widespread tephra from a plinian eruption on Milos (Firiplaka Tephra). Near the KYN we correlate marine tephras with the Kos Plateau Tuff, the Yali 1 and Yali 2 tephras, and the Upper and Lower Pumice on Nisyros. Between these two major tephras, we found two tephras from Nisyros not yet observed on land. The four Nisyros tephras form a systematic trend toward more evolved magma compositions. In the companion paper we use the tephrostratigraphic framework established here to constrain new eruption ages and magnitudes as a contribution to volcanic hazard assessment.
    Type: Article , PeerReviewed
    Format: other
    Format: other
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: We use the tephrostratigraphic framework along the Aegean Volcanic Arc established in part 1 of this contribution to determine hemipelagic sedimentation rates, calculate new tephra ages, and constrain the minimum magnitudes of (sub)plinian eruptions of the last 200 kyrs. Hemipelagic sedimentation rates range from ∼0.5 cm/kyr up to ∼40 cm/kyr and vary laterally as well as over time. Interpolation between dated tephras yields an eruption age of ∼37 ka for the Firiplaka tephra, showing that explosive volcanism on Milos is ∼24 kyrs younger than previously thought. The four marine Nisyros tephras (N1 to N4) identified in part 1 (including the Upper (N1) and Lower (N4) Pumice) have ages of ∼57 ka, ∼63 ka, ∼69 ka, and ∼76 ka, respectively. Eruption ages for the Yali-1 and Yali-2 tephras are ∼55 ka and ∼34 ka, respectively. The Yali-2 tephra comprises two geochemically and laterally distinct marine facies. The southern facies is identical to the Yali-2 fall deposit on land but the western facies has slightly less evolved glass compositions. Overall, erupted plinian and co-ignimbrite fall tephra volumes range from 〈1 to 56 km3 (excluding possible caldera fillings and ignimbite volumes), and 80% of the eruptions had magnitude 5.5〈M≤7.2 (M=log(m)-7; m = erupted magma mass in kg). Twenty percent of the tephras represent 3.2〈M〈5.5 eruptions. The long-term average tephra magma mass flux through highly explosive eruptions of Santorini is estimated at ∼40 kg/s. The analogous data for the Kos-Yali-Nisyros volcanic complex is less-well constrained but similar to Santorini.
    Type: Article , PeerReviewed
    Format: archive
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-19
    Description: Geological histories of volcanic ocean islands can be revealed by the sediments shed by them. Hence there is an interest in studying cores of volcaniclastic sediments that are particularly preserved in the many flat-floored basins lying close to the Azores islands. We analyse four gravity cores collected around the central group of the islands. Three sedimentary facies (F1-F2a, F2b) are recognized based on visual core logging, particle morphometric and geochemical analyses. F1 is clay-rich hemipelagite comprising homogeneous mud with mottled structures from bioturbation. F2a and F2b are both clay-poor volcaniclastic deposits, which are carbonate-rich and carbonate-poor, respectively. More biogenic carbonate in F2a reflects the incorporation of unconsolidated calcareous material from island shelves or bioturbation. Within F2a and F2b we identify deposits emplaced by pyroclastic fallout, primary or secondary turbidity currents by combining multiple information from lithological composition, sedimentary structures, chemical composition of volcanic glass shards and morphometric characteristics of volcanic particles. Primary volcaniclastic sediments were found in all four cores, echoing activity known to have occurred up to historical times on the adjacent islands. These preliminary results suggest that greater details of geological events could be inferred for other volcanic islands by adopting a similar approach to core analysis.
    Type: Book chapter , NonPeerReviewed , info:eu-repo/semantics/bookPart
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...