GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Keywords
Language
  • 1
    Keywords: Forschungsbericht ; Wasserwirtschaft
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (37 Seiten, 2,00 MB) , Diagramme, Illustrationen
    Language: German
    Note: Förderkennzeichen BMBF 02WRM1365C. - Verbund-Nummer 01157601 , Paralleltitel dem englischen Berichtsblatt entnommen , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Sprache der Zusammenfassung: Deutsch, Englisch
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Forschungsbericht
    Type of Medium: Online Resource
    Pages: Online-Ressource (15 S., 966 KB) , graph. Darst.
    Language: German
    Note: Förderkennzeichen BMBF 01 LD 0003 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Auch als gedr. Ausg. vorhanden , Systemvoraussetzungen: Acrobat reader.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Aufsatzsammlung ; Konferenzschrift ; Hochland von Tibet ; Quartär ; Klima ; Geschichte
    Type of Medium: Book
    Pages: 201 S. , Ill., graph. Darst., Kt. , 28 cm
    Series Statement: Quaternary international 218
    Language: English
    Note: Literaturangaben
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of paleolimnology 14 (1995), S. 281-296 
    ISSN: 1573-0417
    Keywords: Midwestern Unites States ; Stable Isotopes ; Ostracodes ; Holocene ; Paleoclimate ; Lake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Stable oxygen and carbon isotope geochemistry of ostracode valves, abundance and assemblages of ostracode species, and sedimentological parameters from cores taken in Williams and Shingobee Lakes in north-central Minnesota show changes in climatic and hydrologic history during the Holocene. Isotopic records are consistent with the following scenario: Before 9800 yr B.P. the two lakes were connected. Increasing evaporation through the jack/red pine period (9800-7700 yr B.P.) led to lower lake levels, leaving small separated basins. The prairie period (7700-4000 yr B.P.) reflects high aridity, and lake levels reached low stands shortly before 6500 yr B.P. Low lake levels are associated with groundwater discharge between 6500 and 6000 yr B.P. The hardwood period (4000-3200 yr B.P.) corresponds to long cold winters and warm to cool summers with lower evaporation rates and slower sedimentation. During the white pine period (〈3200 yr B.P.) evaporation increased and/or precipitation shifted to the summer months. These changes can be related to shifting atmospheric circulation patterns. Zonal flow was probably dominant during the early Holocene until the end of the prairie period (c. 4000 yr B.P.). During the hardwood period a combination of zonal and meridional flow patterns caused long and cold winters and wetter summers. During the white pine period wintners were shorter and the meridional flow pattern more significant. Today meridional flow dominates the circulation pattern.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-0417
    Keywords: Central Europe ; stable isotopes ; ostracode ; quaternary ; paleoclimate ; lake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Stable oxygen and carbon isotope geochemistry of ostracode calcite from a core taken at a site 40 m deep in Lake Neuchâtel, Switzerland, shows distinct and rapid shifts since deglaciation. These shifts are interpreted in terms both of climatic changes and of the impact of major changes in the catchment input. The Aar River, draining a high-altitude Alpine catchment, either entered or bypassed the lake during the latest Pleistocene to the mid-Holocene. During the Preboreal and two short intervals between interpolated ages of 7200 and 6950 yr BP and since 4850 yr BP the Aar River has bypassed the lake. During times of Aar River input, the isotopic ratios in ostracode valves are approximately 2‰ lower than during periods with only input from the Jura Mountains catchment. Isotopic signatures are interpreted in terms of a four fold chronology provided by pollen stratigraphy and AMS radiocarbon ages: (i) Oldest Dryas, (ii) Bølling/Allerød, (iii) Younger Dryas, and (iv) Holocene. The interpretation of the isotopic records depends upon a precise sedimentological analysis of the cores. The Oldest Dryas is characterized by clastic rhythmites, whereas the Bølling/Allerød and Younger Dryas to mid-Holocene periods are characterized by thinly-bedded, non-glacial rhythmites. The absence of the Aar River input during the Preboreal, the upper Older Atlantic as well as since 4800 yr BP, is characterized by the deposition of a massive calcareous silt comprising abundant authigenic calcite. Isotopic signatures of ostracodes from the Oldest Dryas reflect melting of Alpine glaciers and deglaciation conditions. The lowest δ18O PDB values of about −11 ‰ are consistent with a mean temperature of annual precipitation (MTAP) of about 5–8 °C lower than that of the Holocene. From mid-Bølling upwards, the record lacks evidence of meltwater from an Alpine ice cap. MATP estimated from the highest Bølling/Allerød δ18O PDB values are similar to values estimated for the early to middle Holocene when Aar River water also inflowed into Lake Neuchâtel. A abrupt lowering of δ18O PDB values over the Younger Dryas interval is consistent with airmass temperatures 3–4.5 °C lower than that of the Holocene as suggested from other Swiss sites. Evidence of stronger seasonality during the Younger Dryas episode, such as very well-defined laminations, can partly explain the shift to lower δ18O values. The Holocene shifts in stable isotope ratios, however, are not interpreted in terms of MTAP shifts but rather shifts in the river-input balance.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-0417
    Keywords: Atacama ; Holocene ; limnogeology ; South America ; paleoclimatology ; lake sediments
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Sedimentological, mineralogical and geochemical analyses of sediment cores from 9 m-deep, saline Laguna Miscanti, Chile (23 ° 44′S, 67 °46′W, 4140 m a.s.l.) together with high-resolution seismic profiles provide a mid to late Holocene time series of regional environmental change in the Atacama Altiplano constrained by 210Pb and conventional 14C dating. The mid Holocene was the most arid interval since the last glacial maximum, as documented by subaerial exposure and formation of hardgrounds on a playa surface. Extremely low lake levels during the mid Holocene appear consistent with lower effective moisture recorded at other sites along the Altiplano and in the Amazon Basin. Termination of this arid period represented a major shift in the regional environmental dynamics and inaugurated modern atmospheric conditions. The cores show a progressive upward increase in effective moisture interrupted by numerous century-scale drier periods of various intensities and durations that characterize a fluctuating late Holocene climate. In spite of chronological uncertainties, the major environmental changes seem to correlate with the available paleorecords from the region providing a coherent account of effective moisture variability in the tropical highlands of South America.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of paleolimnology 20 (1998), S. 15-30 
    ISSN: 1573-0417
    Keywords: North-central United States ; Stable isotopes ; ostracodes ; postglacial ; paleoclimate ; lake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences
    Notes: Abstract Sedimentological parameters and stable O- and C-isotopic composition of marl and ostracode calcite selected from a 17.7-m-long core from the 8-m-deep center of Pickerel Lake, northeastern South Dakota, provide one of the longest (ca. 12ky) paleoenvironmental records from the northern Great Plains. The late Glacial to early Holocene climate in the northern Great Plains was characterized by changes from cold and wet to cold and dry, and back to cold and wet conditions. These climatic changes were controlled by fluctuations in the positions of the Laurentide ice sheet and the extent of glacial Lake Agassiz. We speculate that the cold and dry phase may correspond to the Younger Dryas event. A salinity maximum was reached between 10.3 and 9.5 ka, after which Pickerel Lake shifted from a system controlled by atmospheric changes to a system controlled by groundwater seepage that might have been initiated by the final withdrawal of Glacial Lake Agassiz. A prairie lake was established at approximately 8.7 ka, and lasted until about 2.2 ka. During this mid-Holocene prairie period, drier conditions than today prevailed, interrupted by periods of increased moisture at about 8, 4, and 2.2 ka. Prairie conditions were more likely dry and cool rather than dry and warm. The last 2.2 ka are characterized by higher climatic variability with 400-yr aridity cycles including the Medieval Warm Period and the Little Ice Age. Although the signal of changing atmospheric circulation is overprinted by fluctuations in the positions of the ice sheet and glacial Lake Agassiz during the late Glacial-Holocene transition, a combination of strong zonal circulation and strong monsoons induced by the presence of the ice sheet and high insolation may have provided mechanisms for increased precipitation. Zonal flow introducing dry Pacific air became more important during the prairie period but seems to have been interrupted by short periods of stronger meridional circulation with intrusions of moist air from the Gulf of Mexico. More frequent switching between periods of zonal and meridional circulation seem to be responsible for increased climatic variability during the last 2.2 ka.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-07-06
    Description: The Tibetan Plateau, also known as the “Water Tower of Asia” because of its function as a water storage and supply region, responds dramatically to modern climate changes. Paleoecological shifts inferred from lake sediment archives provide essential insights into past climate changes, and the processes that drove those shifts. This is especially true for studies of lakes in endorheic basins on the Tibetan Plateau, where lake level is regulated predominantly by Monsoon intensity. Such water bodies provide excellent opportunities to reconstruct past changes in humidity. Most paleolimnological investigations of lakes on the Tibetan Plateau, however, have involved the study of a single sediment core, making it difficult to discern between changes caused by local events and those caused by lake-wide or regional processes. Here we present results from a paleolimnological study of Lake Taro Co, a currently closed-basin lake in Central Tibet. We compared a sediment record from the central part of the lake to a record from the near-shore area, and present results of sedimentological and bioindicator (chironomid, diatom, pollen) analyses from both records. Results show three periods of lake-wide ecosystem change (〉 ca. 5250, 5250–2250 and 〈 since about 2250 cal year BP), which reflect a continuous drying trend throughout the Middle and Late Holocene. In addition to this lake-wide trend, we identified two local events in the sediment core from the southeastern, nearshore site. These include (1) a hiatus between 12,400 and 5400 cal year BP and (2) an 1800-year period of distinct paleoenvironmental conditions (5400–3600 cal year BP). We hypothesize that both events were caused by relocation of a river in the southeast sector of the lake’s catchment. We propose that the first relocation caused an erosion event that removed sediment, thereby producing the hiatus. During the following 1800 years, the core site may have been located on the river delta, before another river relocation at 3600 cal year BP established the modern prodelta situation. Our study demonstrates the value of using multiple sediment cores from a lake, to better identify processes that control widespread versus local events.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Fellowships for Young International Scientists http://dx.doi.org/10.13039/501100010895
    Description: NSFC Research Fund for International Young Scientists (CN)
    Description: Deutsche Forschungsgemeinschaft (DFG) (DE)
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: Technische Universität Braunschweig (1042)
    Keywords: ddc:551 ; Monsoon ; Chironomidae ; Diatoms ; Geochemistry ; XRF ; Paleolimnology
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-05
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉ABSTRACT〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉The recent rise in air temperatures detected at high altitudes of the Tibetan Plateau has accelerated glacier melt and retreat. Moreover, enhanced monsoonal precipitation has increased runoff and transport of allochthonous material to the lakes. Consequently, water levels are rising, modifying the spatial distribution and composition of local aquatic biota. To infer these environmental and biological changes in recent decades, a 30‐cm‐long sediment core, representing the past ~160 years, from Nam Co, an endorheic lake, was analyzed for subfossil chironomid assemblages and sediment geochemistry. In total, 25 chironomid morphotypes were identified. Nineteen were considered as non‐rare taxa (abundances ≥2%) and six as rare taxa (abundances 〈2%). Since 1956 〈sc〉ce〈/sc〉, higher chironomid richness (〈italic〉S〈/italic〉 = 19) is evident compared to the previous 100 years. The simultaneous decrease in the abundance of profundal 〈italic〉Micropsectra radialis〈/italic〉‐type and increase of both 〈italic〉Chironomus〈/italic〉 and 〈italic〉Procladius〈/italic〉, taxa adapted to more eurytopic and slightly warmer water bodies, indicate increasing water temperatures and intensified primary productivity. The dominance of littoral chironomid assemblages reflects increasing lake water levels, flooded shorelines and expansion of littoral areas driven by increased precipitation and glacial meltwater input both resulting from the increase in air temperatures. This scenario is confirmed by increases in total nitrogen and Zr/Rb ratios, indicating higher productivity and coarser grain size as a consequence of increased runoff via the Niya Qu. These hydrological changes have resulted in a positive water balance that can be linked to an increase in moisture supply from the Indian summer monsoon and glacier melt, reflecting increasing temperatures and precipitation since 1956 〈sc〉ce〈/sc〉, ultimately driven by anthropogenic warming.〈/p〉
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:577.6 ; chironomid ; Indian summer monsoon ; Nam Co ; Niya Qu ; nutrients ; runoff ; water level
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-02-08
    Description: Highlights • Evaluation of environmental variability induced by Heinrich Stadials (HS5a-HS1) in continental northern Neotropical region. • Multiproxy evidence reveals mild temperature decreases and drastic fluctuations in precipitation during HSs. • Ultrastructure of HSs suggests individual environmental response of each Stadial making them contrasting from each other. • Most drastic climate changes induced by HSs exerted positive effects on diversity of aquatic communities. Abstract We reconstruct environmental conditions of the period 53-14 kyr BP in the continental northern Neotropical region. We evaluate in detail the magnitude of climatic fluctuations and their effects on aquatic communities during six Heinrich Stadials (HS1-HS5a), using sediments from Lake Petén Itzá, Guatemala, and a multiproxy approach. In Lake Petén Itzá typical Heinrich Stadials (HSs) are recorded in sediments as alternations of gypsum and clay, and abrupt changes in magnetic susceptibility, CaCO3 and biological compositions. This suggests that HSs were periods of hydrological unbalance, characterized by dry spells, punctuating the predominant humid conditions characterizing the period 53-14 kyr BP. The ultrastructure of HSs allows us to identify four different types of climatic conditions associated to HSs: 1) prevailing dry conditions but changing to humid (HS5, HS3); 2) predominantly humid conditions but changing to arid (HS2); 3) fluctuating humid-dry-humid (HS4, HS1); and 4) arid with high lake water conductivity (HS5a). The continuous presence of tropical ostracode species during HSs suggests that lake water temperatures were not drastically lowered. Ostracode-based transfer functions indicate that during HSs, epilimnetic water temperatures decreased by 1–3 °C compared to mean modern temperatures. Lake solute composition and conductivity were strongly affected by HSs. During HS5a and HS1 we estimate conductivity values 〉 800 μS cm−1. Diversity indices show significant differences (F5,70 = 3.74, p = 0.004) of ostracode species composition among HSs. Highest diversities occurred during HS5a, HS4 and HS1, which display greater climatic alterations than the other HSs. Fluctuating climates seem to have exerted positive effects on diversity of aquatic communities by producing an increase in habitat heterogeneity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...