GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-01-04
    Description: The Gaoligongshan metamorphic belt, located east of the Eastern Himalayan Syntaxis (EHS) in the Yunnan province, southwestern China, is a compelling region in which to determine temporal constrains on crustal dynamic processes related to the Himalayan orogeny. We applied multi-system geo- and thermochronology (900 °C to 〈50 °C) to orthogneiss and mylonites from a major shear zone in the southern Gaoligongshan in order to elucidate the magmatic, cooling and exhumation history of this belt. Zircon U/Pb data reveal three magmatic events at ∼486 Ma, ∼136 Ma and ∼76 Ma. Similar ages are found in orthoderivative rocks of the neighboring Tengchong and Baoshan blocks, and the Gangdese batholith, suggesting that the southern Gaoligongshan is composed of an assemblage of Lhasa and Qiangtang terrane derived rocks. Muscovite Rb/Sr ages of 35–21 Ma are coeval with the onset of lateral crustal displacement along major shear zones in Eastern Tibet and Indochina, and with the post-collision volcanic activity in western Yunnan. Biotite Rb/Sr and mica 40Ar/39Ar ages provide evidence that mylonitization along the Gaoligongshan shear zone and crustal rotation of the Tengchong and Baoshan blocks proceeded during the Miocene, between 19 and 12 Ma, when the rocks rapidly cooled through the 350–280 °C temperature range. Almost identical 40Ar/39Ar ages reported for the Karakorum–Jiali–Parlung Fault system in Western Tibet suggest that the Gaoligongshan shear zone is the southeastern continuation of this fault, recording the eastward extrusion of Tibet and crustal movement around the EHS. The final stage of exhumation of the Gaoligongshan occurred between 8 and 5 Ma at an average exhumation rate of ∼3 km/Ma as documented by apatite fission-track and apatite (U–Th–Sm)/He data. This rapid exhumation was triggered by crustal root delamination and opening of the Andaman sea. Our results clearly show that the complex tectonothermal evolution of the Gaoligongshan was influenced by Tibetan extrusion and escape tectonics associated with lower crustal flow around the EHS and the southeastward movement of Indochina and back-arc extension in response to Andaman seafloor spreading.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Highlights • Five Pleistocene and Holocene explosive eruptions of Mt. Erciyes dated. • Holocene Dikkartın and Perikartın pumices chemically equal Mediterranean S1 tephra. • Karagüllü dome eruption identified as the source of a Black Sea cryptotephra. • Eastward dispersal of Dikkartın fall-out consistent with probabilistic modeling. • Southerly S1 tephra occurrence suggests low altitude ash dispersal from Mt. Ericyes. Abstract Deposition of early Holocene Eastern Mediterranean S1 tephra and a Black Sea cryptotephra coincides with cultural transitions in the Fertile Crescent termed the Neolithic Revolution as well as sapropel formation during climate variability of the African humid period, classifying them as paramount regional marker horizons for archaeology as well as paleoclimatology. Their correlations with specific eruptions of the Mt. Erciyes stratovolcanic complex (Central Anatolia) remained inconclusive though. Here, we use zircon double-dating by (U–Th)/He and U–Th disequilibrium methods, major and trace element tephra glass geochemistry, and probabilistic modeling of tephra dispersal in an attempt to characterize all major late Quaternary proximal tephras of Mt. Erciyes, and to correlate them with distal deposits. Furthermore, we discuss contrasting proximal and distal tephra dispersal. Three nearly-coeval rhyolitic satellite domes (Dikkartın, Perikartın, and Karagüllü) erupted at Mt. Erciyes in the early Holocene, and their dome extrusions were all preceded by explosive phases producing pyroclastic material that formed tephra fall and pyroclastic flow deposits. The new eruption age of 9.03 ± 0.55 ka (1σ uncertainty here and elsewhere) for proximal Dikkartın pumice is consistent with 14C-based S1 tephra chronologies in distal locations averaging 8.92 ± 0.03 cal ka BP. Perikartın pyroclastic flow deposits predate S1 tephra by ca. 0.8 ka according to a pair of published 14C ages, and stratigraphically overlie Karagüllü fall-out, here dated to 8.2 ± 1.8 ka. Previously undated proximal tephras of Mt. Erciyes erupted in the Late (85.2 ± 4.9 ka) and Middle Pleistocene (154.5 ± 5.3 ka). S1 tephra glass is chemically similar to that of Dikkartın fall-out, but also indistinguishable from that of Perikartın fall-out. Karagüllü pumice is characterized by a distinct glass chemical composition, which correlates with that of unnamed cryptotephra reported for the southeastern Black Sea instead, where these results call for a re-evaluation of existing age models. Maximum lithic clast size isopleths for proximal Dikkartın fall-out indicate eastward dispersal of a 20 ± 5 km high eruption plume by stratospheric winds, in agreement with results of probabilistic tephra dispersal modeling. This azimuth contrasts with the known distribution of S1 tephra at distal locations that are all south of Mt. Erciyes. Significant tephra occurrences at up to 1300 km distance and orthogonal to prevalent stratospheric wind directions either result from very atypical wind conditions (probability ≪10 %), or are caused by tephra transport by prevailing low altitude winds. Two scenarios are proposed for low altitude transport: eolian reworking of primary fall-out (more likely from the more widespread Dikkartın deposits), or co-ignimbrite ash cloud dispersal (more likely from the Perikartın eruption which predominantly produced pyroclastic flows). Because S1 tephra is chemically indistinguishable from both Dikkartın and Perikartın by major and trace element glass compositions, its exact source and dispersal mechanism remain ambiguous, although existing 14C ages for Perikartın predating those for S1 tephra favor Dikkartın as its source.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Highlights • Combined U-Pb and (U-Th)/He dating provides accurate eruption ages for the Gorelka tephra. • The largest marine transgression of the Eastern Paratethys in the Miocene was at ∼11.5 Ma. • VEI ∼7.4 eruption from a volcanic source in the Carpathians produced the Gorelka tephra. • Westerly winds transported the Gorelka tephra ∼1500 km ENE from the volcanic source. Volcanic ash layers (tephras) dispersed over large areas may offer important time markers in the geological record provided their age and geochemical fingerprint can be established. Accurately dated and geochemically characterized tephras are essential in correlation of temporally and spatially discontinuous geological records, which is key for paleoenvironmental, paleoclimatic, and paleogeographic reconstructions. Here we report geochronological and geochemical data for the Gorelka tephra (southwestern Russia) – a prominent tephra of uncertain age and origin that provides a key time marker for the largest marine transgression of the Eastern Paratethys Sea in the Miocene. Coupled U-Pb and (U-Th)/He dating of zircon crystals constrains the eruption age of the Gorelka tephra, and hence the age of the highest stand of Eastern Paratethys in the Miocene, to 11.5±0.5 Ma. Geochemical characteristics in combination with the new eruption age and tephra volume estimates suggest a magnitude ∼7.4 eruption from a volcanic source in the Transcarpathian region. The Gorelka tephra was transported ∼1,500 km ENE from its source by westerly winds, which were typical for the atmospheric circulation regime within the Ferrel cell in Central Europe during Sarmatian times. Based on the results presented here, the Gorelka tephra provides a reliable tie-point for paleoenvironmental and stratigraphic correlations across southeastern Europe.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The climactic Los Chocoyos (LCY) eruption from Atitlán caldera (Guatemala) is a key chronostratigraphic marker for the Quaternary period given the extensive distribution of its deposits that reached both the Pacific and Atlantic Oceans. Despite LCY tephra being an important marker horizon, a radioisotopic age for this eruption has remained elusive. Using zircon (U–Th)/He geochronology, we present the first radioisotopically determined eruption age for the LCY of 75 ± 2 ka. Additionally, the youngest zircon crystallization 238U–230Th rim ages in their respective samples constrain eruption age maxima for two other tephra units that erupted from Atitlán caldera, W-Fall (130 +16/−14 ka) and I-Fall eruptions (56 +8.2/−7.7 ka), which under- and overlie LCY tephra, respectively. Moreover, rim and interior zircon dating and glass chemistry suggest that before eruption silicic magma was stored for 〉80 kyr, with magma accumulation peaking within ca. 35 kyr before the LCY eruption during which the system may have developed into a vertically zoned magma chamber. Based on an updated distribution of LCY pyroclastic deposits, a new conservatively estimated volume of ~1220 ± 150 km3 is obtained (volcanic explosivity index VEI 〉 8), which confirms the LCY eruption as the first-ever recognized supereruption in Central America.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Knowledge of temporal patterns of past explosive eruptions is necessary to understand possible future eruptive behavior. However, volcanic records based on geological reconstructions remain incomplete. This inference is true not only for remote and sparsely populated areas like the Aleutian or Kurile-Kamchatka arcs, but also for Europe, where past large explosive events are continuously recognized in the geological record. Here we report the first age and geochemical data on the violent middle to late Pleistocene explosive eruptions from the Elbrus volcanic center (Greater Caucasus), which towers over the densely populated regions in southern Russia and Georgia. We attribute six disparate ash deposits found in the terrestrial and marine sediments along the SE European margin to the Elbrus volcanic center based on major and trace element compositions of individual shards of volcanic glass and radiogenic Sr-Nd-Pb isotope compositions of bulk tephra. We suggest that these deposits represent products of five different eruptions that were dispersed over distances of more than 150–560 km from their source. Three of four eruptions are dated at 522 ± 36, 258 ± 13, and 84.6 ± 7.4 ka by a combined zircon U–Th–Pb and (U–Th)/He approach. One sample revealed an overdispersed spectrum of single crystal (U–Th)/He dates with an average of 176 ± 40 ka. Zircon characteristics and statistical deconvolution of the geochronology data suggest that this sample contains zircon crystals from two different eruptions tentatively dated at 156.5 ± 7.7 ka and 222.8 ± 13 ka. These eruption ages represent the first recognition of a suite of large pumiceous eruptions from the Elbrus volcanic center postdating the previously known explosive activity, documented by ∼800 ka old welded tuffs. These data also provide the first geochemical and geochronological characterization of both proximal and distal Elbrus tephra glasses and contribute to the global tephra database, permitting the identification of Elbrus tephras in distal terrestrial and marine paleoenvironmental archives and hence their use as paleoclimate and archaeological markers. We consider the significance of the identified tephras for paleoenvironmental research and show their potential for tephrochronological studies in the East European Plain and adjacent areas.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-01-01
    Description: A combination of zircon (U–Th)/He (ZHe), apatite fission track (AFT) and apatite (U–Th)/He (AHe) dating methods is applied to constrain the metamorphic and exhumation history of the Tatric part of the Branisko Mountains in the Western Carpathians. ZHe ages from the basement samples prove the basement experienced a very low-grade to low-grade Eo-Alpine metamorphic overprint in mid-Cretaceous times. Miocene AFT and AHe ages found in the basement and in the Palaeogene sediments conclusively demonstrate that the Branisko Mts experienced a ‘mid-Miocene thermal event’. This thermal event had a regional character and was related to magmatic and/or burial heating that exposed the sediment and basement samples to ~ 120–130°C and ~ 100–190°C, respectively.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-03-29
    Description: The Apuseni Mountains were formed during Late Cretaceous convergence between the Tisia and the Dacia microplates as part of the Alpine orogen. The mountain range comprises a sedimentary succession similar to the Gosau Group of the Eastern Alps. This work focuses on the sedimentological and geodynamic evolution of the Gosau basin of the Apuseni Mts. and attempts a direct comparison to the relatively well studied Gosau Group deposits of the Eastern Alps. By analyzing the Upper Cretaceous Gosau sediments and the surrounding geological units, we were able to add critical evidence for reconstructing the Late Mesozoic to Paleogene geodynamic evolution of the Apuseni Mountains. Nannoplankton investigations show that Gosau sedimentation started diachronously after Late Turonian times. The burial history indicates low subsidence rates during deposition of the terrestrial and shallow marine Lower Gosau Subgroup and increased subsidence rates during the period of deep marine Upper Gosau Subgroup sedimentation. The Gosau Group of the Apuseni Mountains was deposited in a forearc basin supplied with sedimentary material from an obducted forearc region and the crystalline hinterland, as reflected by heavy mineral and paleocurrent analysis. Zircon fission track age populations show no fluctuation of exhumation rates in the surrounding geological units, which served as source areas for the detrital material, whereas increased exhumation at the K/Pg boundary can be proven by thermal modeling on apatite fission track data. Synchronously to the Gosau sedimentation, deep marine turbidites were deposited in the deep-sea trench basin formed by the subduction of the Transylvanian Ocean. The similarities to the Gosau occurrences of the Eastern Alps lead to direct correlation with the Alpine paleogeographic evolution and to the assumption that a continuous ocean basin (South Penninic - Transylvanian Ocean Basin) was consumed until Late Cretaceous times.
    Keywords: fission track dating; Apuseni Mountains; basin modeling; Eastern Alps; Gosau basin ; 551
    Language: English
    Type: article , publishedVersion
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-03-29
    Description: Movement within the Earth’s upper crust is commonly accommodated by faults or shear zones, ranging in scale from micro-displacements to regional tectonic lineaments. Since faults are active on different time scales and can be repeatedly reactivated, their displacement chronology is difficult to reconstruct. This study represents a multi-geochronological approach to unravel the evolution of an intracontinental fault zone locality along the Danube Fault, central Europe. At the investigated fault locality, ancient motion has produced a cataclastic deformation zone in which the cataclastic material was subjected to hydrothermal alteration and K-feldspar was almost completely replaced by illite and other phyllosilicates. Five different geochronological techniques (zircon Pb-evaporation, K–Ar and Rb–Sr illite, apatite fission track and fluorite (U-Th)/He) have been applied to explore the temporal fault activity. The upper time limit for initiation of faulting is constrained by the crystallization age of the primary rock type (known as “Kristallgranit”) at 325 ± 7 Ma, whereas the K–Ar and Rb–Sr ages of two illite fractions 〈2 μm (266–255 Ma) are interpreted to date fluid infiltration events during the final stage of the cataclastic deformation period. During this time, the “Kristallgranit” was already at or near the Earth’s surface as indicated by the sedimentary record and thermal modelling results of apatite fission track data. (U–Th)/He thermochronology of two single fluorite grains from a fluorite–quartz vein within the fault zone yield Cretaceous ages that clearly postdate their Late-Variscan mineralization age. We propose that later reactivation of the fault caused loss of helium in the fluorites. This assertion is supported by geological evidence, i.e. offsets of Jurassic and Cretaceous sediments along the fault and apatite fission track thermal modelling results are consistent with the prevalence of elevated temperatures (50–80°C) in the fault zone during the Cretaceous.
    Keywords: Argillic alteration; Fault zone; K–Ar illite; Apatite fission track; (U–Th)/He thermochronology ; 551 ; Earth Sciences; Geology ; Geophysics/Geodesy
    Language: English
    Type: article , publishedVersion
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-10-17
    Description: Since the first discovery of ultrahigh pressure (UHP) rocks 30 years ago in the Western Alps, the mechanisms for exhumation of (U)HP terranes worldwide are still debated. In the western Mediterranean, the presently accepted model of synconvergent exhumation (e.g., the channel-flow model) is in conflict with parts of the geologic record. We synthesize regional geologic data and present alternative exhumation mechanisms that consider the role of divergence within subduction zones. These mechanisms, i.e., (i) the motion of the upper plate away from the trench and (ii) the rollback of the lower plate, are discussed in detail with particular reference to the Cenozoic Adria-Europe plate boundary, and along three different transects (Western Alps, Calabria-Sardinia, and Corsica-Northern Apennines). In the Western Alps, (U)HP rocks were exhumed from the greatest depth at the rear of the accretionary wedge during motion of the upper plate away from the trench. Exhumation was extremely fast, and associated with very low geothermal gradients. In Calabria, HP rocks were exhumed from shallower depths and at lower rates during rollback of the Adriatic plate, with repeated exhumation pulses progressively younging toward the foreland. Both mechanisms were active to create boundary divergence along the Corsica-Northern Apennines transect, where European southeastward subduction was progressively replaced along strike by Adriatic northwestward subduction. The tectonic scenario depicted for the Western Alps trench during Eocene exhumation of (U)HP rocks correlates well with present-day eastern Papua New Guinea, which is presented as a modern analog of the Paleogene Adria-Europe plate boundary.
    Description: Published
    Description: 1786–1824
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-06-30
    Description: The climactic Los Chocoyos (LCY) eruption from Atitlán caldera (Guatemala) is a key chronostratigraphic marker for the Quaternary period given the extensive distribution of its deposits that reached both the Pacific and Atlantic Oceans. Despite LCY tephra being an important marker horizon, a radioisotopic age for this eruption has remained elusive. Using zircon (U–Th)/He geochronology, we present the first radioisotopically determined eruption age for the LCY of 75 ± 2 ka. Additionally, the youngest zircon crystallization 238U–230Th rim ages in their respective samples constrain eruption age maxima for two other tephra units that erupted from Atitlán caldera, W‐Fall (130 +16/−14 ka) and I‐Fall eruptions (56 +8.2/−7.7 ka), which under‐ and overlie LCY tephra, respectively. Moreover, rim and interior zircon dating and glass chemistry suggest that before eruption silicic magma was stored for 〉80 kyr, with magma accumulation peaking within ca. 35 kyr before the LCY eruption during which the system may have developed into a vertically zoned magma chamber. Based on an updated distribution of LCY pyroclastic deposits, a new conservatively estimated volume of ~1220 ± 150 km3 is obtained (volcanic explosivity index VEI 〉 8), which confirms the LCY eruption as the first‐ever recognized supereruption in Central America.
    Description: Deutsche Forschungsgemeinschaft SCH 2521/6‐1
    Keywords: 551.701 ; 238U–230Th disequilibrium ; geochronology ; tephrochronology ; (U–Th)/He ; zircon
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...