GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Keywords: Sea ice ; Snow Measurement ; Hochschulschrift ; Antarktis ; Weddellmeer ; Sommer ; Meereis ; Schneeschmelze ; Satellitenfernerkundung
    Type of Medium: Online Resource
    Pages: Online-Ressource
    Series Statement: Berichte zur Polar- und Meeresforschung 564
    DDC: 551.34309989
    Language: German
    Note: Literaturverz. S. 124 - 133 , Zugl.: Trier, Univ., Diss., 2007
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Geophysical research letters, Hoboken, NJ : Wiley, 1974, 36(2009), 1944-8007
    In: volume:36
    In: year:2009
    In: extent:4
    Description / Table of Contents: The winter net sea-ice production (NSIP) over the Laptev Sea shelf is inferred from continuous summer-to-winter historical salinity records of 1960s-1990s. While the NSIP strongly depends on the assumed salinity of newly formed ice, the NSIP quasi-decadal variability can be linked to the wind-driven circulation anomalies in the Laptev Sea region. The increased wind-driven advection of ice away from the Laptev Sea coast when the Arctic Oscillation (AO) is positive implies enhanced coastal polynya sea-ice production and brine release in the shelf water. When the AO is negative, the NSIP and seasonal salinity amplitude tends to weaken. These results are in reasonable agreement with sea-ice observations and modeling.
    Type of Medium: Online Resource
    Pages: 4 , graph. Darst
    ISSN: 1944-8007
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-05
    Description: We test the ability of a two-dimensional flux model to simulate polynya events with narrow open-water zones by comparing model results to ice-thickness and ice-production estimates derived from thermal infrared Moderate Resolution Imaging Spectroradiometer (MODIS) observations in conjunction with an atmospheric dataset. Given a polynya boundary and an atmospheric dataset, the model correctly reproduces the shape of an 11 day long event, using only a few simple conservation laws. Ice production is slightly overestimated by the model, owing to an underestimated ice thickness. We achieved best model results with the consolidation thickness parameterization developed by Biggs and others (2000). Observed regional discrepancies between model and satellite estimates might be a consequence of the missing representation of the dynamic of the thin-ice thickening (e.g. rafting). We conclude that this simplified polynya model is a valuable tool for studying polynya dynamics and estimating associated fluxes of single polynya events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-03-13
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-01-15
    Description: Satellite observations of microwave brightness temperatures between 19 GHz and 85 GHz are the main data sources for operational sea-ice monitoring and retrieval of ice concentrations. However, microwave brightness temperatures depend on the emissivity of snow and ice, which is subject to pronounced seasonal variations and shows significant hemispheric contrasts. These mainly arise from differences in the rate and strength of snow metamorphism and melt. We here use the thermodynamic snow model SNTHERM forced by European Re-Analysis (ERA) interim data and the Microwave Emission Model of Layered Snowpacks (MEMLS), to calculate the sea-ice surface emissivity and to identify the contribution of regional patterns in atmospheric conditions to its variability in the Arctic and Antarctic. The computed emissivities reveal a pronounced seasonal cycle with large regional variability. The emissivity variability increases from winter to early summer and is more pronounced in the Antarctic. In the pre-melt period (January–May, July–November) the standard deviations in surface microwave emissivity due to diurnal, regional and inter-annual variability of atmospheric forcing reach up to Δε = 0.034, 0.043, and 0.097 for 19 GHz, 37 GHz and 85 GHz channels, respectively. Between 2000 and 2009, small but significant positive emissivity trends were observed in the Weddell Sea during November and December as well as in Fram Strait during February, potentially related to earlier melt onset in these regions. The obtained results contribute to a better understanding of the uncertainty and variability of sea-ice concentration and snow-depth retrievals in regions of high sea-ice concentrations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-01
    Description: Storfjorden, which hosts a latent heat polynya, is a well known region of dense water formation. This Brine-enriched Shelf Water (BSW) displays substantial year to year variability in its properties, which is partly linked to interannual variations in ice production. Here we have developed a model based on high-resolution AMSR-E satellite sea-ice concentration data, available between 2002 and 2011, and atmospheric forcing to estimate the ice production in the polynya and associated salt release. The average modeled ice production for the epoch 2002–2011 is 47 km3 per year, corresponding to a salt release of 1200 × 109 kg. The two most anomalous winters were 2004–2005 (salt deficit of −367 × 109 kg) and 2007–2008 (salt excess of 398 × 109 kg). Available observations of BSW properties are relatively scarce during this period and are here augmented with data collected in March 2007 from an ice-tethered mooring to the northwest of the fjord. BSW was found up to the surface, with maximum salinity and density of 35.27 and 28.4 kg m−3, respectively, at 55 m. In addition, supercooled water was found down to 10 m under relatively mild atmospheric conditions. It is shown to have formed a week before, during an intense frazil ice formation episode, exceeding 2 km3 of frazil ice according to the model. Although observations remain too few to robustly assess the relation between ice production and BSW properties, there is suggestion of a direct impact for most anomalous years. The exceptional ice production in 2007–2008 is most likely the cause of the very saline BSW in 2008 and strong plume of dense water toward Fram Strait reported by other authors. Anomalous ice production appears predominantly driven by the duration of the freezing season and anomalous opening of the polynya.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-01-07
    Description: Arctic flaw polynyas are considered to be highly productive areas for the formation of sea-ice throughout the winter season. Most estimates of sea-ice production are based on the surface energy balance equation and use global reanalyses as atmospheric forcing, which are too coarse to take into account the impact of polynyas on the atmosphere. Additional errors in the estimates of polynya ice production may result from the methods of calculating atmospheric energy fluxes and the assumption of a thin-ice distribution within polynyas. The present study uses simulations using the mesoscale weather prediction model of the Consortium for Small-scale Modelling (COSMO), where polynya area is prescribed from satellite data. The polynya area is either assumed to be ice-free or to be covered with thin ice of 10 cm. Simulations have been performed for two winter periods (2007/08 and 2008/09). When using a realistic thin-ice thickness of 10 cm, sea-ice production in Laptev polynyas amount to 30 km3 and 73 km3 for the winters 2007/08 and 2008/09, respectively. The higher turbulent energy fluxes of open-water polynyas result in a 5070% increase in sea-ice production (49 km3 in 2007/08 and 123 km3 in 2008/09). Our results suggest that previous studies have overestimated ice production in the Laptev Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-14
    Description: Advanced Microwave Scanning Radiometer (AMSR-E) snow-depth data for Antarctic sea ice are compared with ship-based visual observations of snow depth, ice type and ridged-ice fraction, and with satellite C-band and Ku-band radar backscatter observations for two ship cruises into the Weddell Sea (ISPOL 2004–05, WWOS 2006) and one cruise into the Bellingshausen Sea (SIMBA 2007) during late winter/spring. Most (〉75%) AMSR-E and ship-based snow-depth observations agree within 0.2 m during WWOS and SIMBA. Remaining observations indicate substantial underestimations of snow depths by AMSR-E data. These underestimations tend to increase with the ridged-ice fraction for WWOS and SIMBA. In areas with large snow depths, a combination of relatively stable low C-band radar backscatter and variable Ku-band radar backscatter is associated with undeformed first-year ice and may indicate snow metamorphism at this time of year during SIMBA. In areas with small snow depths, a combination of relatively stable low Ku-band radar backscatter, high C-band radar backscatter and low C-band radar backscatter standard deviations is associated with rough first-year ice during SIMBA. This information can help to better understand causes of the observed AMSR-E snow-depth bias during late-winter/spring conditions with decreasing average snow depth and to delineate areas where this bias occurs.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-16
    Description: Variability and trends in seasonal and interannual ice area export out of the Laptev Sea between 1992 and 2011 are investigated using satellite-based sea ice drift and concentration data. We found an average total winter (October to May) ice area transport across the northern and eastern Laptev Sea boundaries (NB and EB) of 3.48 × 10hoch5 km2. The average transport across the NB (2.87 × 10hoch5 km2)is thereby higher than across the EB (0.61 × 10hoch5 km2), with a less pronounced seasonal cycle. The total Laptev Sea ice area flux significantly increased over the last decades (0.85 × 10hoch5 km2 decade−1, p 〉 0.95), dominated by increasing export through the EB (0.55 × 10hoch5 km2 decade−1, p 〉 0.90), while the increase in export across the NB is smaller (0.3 × 10hoch5 km2 decade−1) and statistically not significant. The strong coupling between across-boundary SLP gradient and ice drift velocity indicates that monthly variations in ice area flux are primarily controlled by changes in geostrophic wind velocities, although the Laptev Sea ice circulation shows no clear relationship with large-scale atmospheric indices. Also there is no evidence of increasing wind velocities that could explain the overall positive trends in ice export. The increased transport rates are rather the consequence of a changing ice cover such as thinning and/or a decrease in concentration. The use of a back-propagation method revealed that most of the ice that is incorporated into the Transpolar Drift is formed during freeze-up and originates from the central and western part of the Laptev Sea, while the exchange with the East Siberian Sea is dominated by ice coming from the central and southeastern Laptev Sea. Furthermore, our results imply that years of high ice export in late winter (February to May) have a thinning effect on the ice cover, which in turn preconditions the occurence of negative sea ice extent anomalies in summer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-08
    Description: Polynyas in the Laptev Sea are examined with respect to recurrence and interannual wintertime ice production.We use a polynya classification method based on passive microwave satellite data to derive daily polynya area from long-term sea-ice concentrations. This provides insight into the spatial and temporal variability of open-water and thin-ice regions on the Laptev Sea Shelf. Using thermal infrared satellite data to derive an empirical thin-ice distribution within the thickness range from 0 to 20 cm, we calculate daily average surface heat loss and the resulting wintertime ice formation within the Laptev Sea polynyas between 1979 and 2008 using reanalysis data supplied by the National Centers for Environmental Prediction, USA, as atmospheric forcing. Results indicate that previous studies significantly overestimate the contribution of polynyas to the ice production in the Laptev Sea. Average wintertime ice production in polynyas amounts to approximately 55 km3 ± 27% and is mostly determined by the polynya area, wind speed and associated large-scale circulation patterns. No trend in ice production could be detected in the period from 1979/80 to 2007/08.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...