GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2017-01-01
    Description: Storfjorden, which hosts a latent heat polynya, is a well known region of dense water formation. This Brine-enriched Shelf Water (BSW) displays substantial year to year variability in its properties, which is partly linked to interannual variations in ice production. Here we have developed a model based on high-resolution AMSR-E satellite sea-ice concentration data, available between 2002 and 2011, and atmospheric forcing to estimate the ice production in the polynya and associated salt release. The average modeled ice production for the epoch 2002–2011 is 47 km3 per year, corresponding to a salt release of 1200 × 109 kg. The two most anomalous winters were 2004–2005 (salt deficit of −367 × 109 kg) and 2007–2008 (salt excess of 398 × 109 kg). Available observations of BSW properties are relatively scarce during this period and are here augmented with data collected in March 2007 from an ice-tethered mooring to the northwest of the fjord. BSW was found up to the surface, with maximum salinity and density of 35.27 and 28.4 kg m−3, respectively, at 55 m. In addition, supercooled water was found down to 10 m under relatively mild atmospheric conditions. It is shown to have formed a week before, during an intense frazil ice formation episode, exceeding 2 km3 of frazil ice according to the model. Although observations remain too few to robustly assess the relation between ice production and BSW properties, there is suggestion of a direct impact for most anomalous years. The exceptional ice production in 2007–2008 is most likely the cause of the very saline BSW in 2008 and strong plume of dense water toward Fram Strait reported by other authors. Anomalous ice production appears predominantly driven by the duration of the freezing season and anomalous opening of the polynya.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-16
    Description: The Vasco—Cirene field experiment, in January—February 2007, targeted the Seychelles—Chagos thermocline ridge (SCTR) region, with the main purpose of investigating Madden—Julian Oscillation (MJO)-related SST events. The Validation of the Aeroclipper System under Convective Occurrences (Vasco) experiment (Duvel et al. 2009) and Cirene cruise were designed to provide complementary views of air—sea interaction in the SCTR region. While meteorological balloons were deployed from the Seychelles as a part of Vasco, the Research Vessel (R/V) Suroît was cruising the SCTR region as a part of Cirene. more: The Vasco—Cirene program explores how strong air—sea interactions promoted by the shallow thermocline and high sea surface temperature in the Seychelles—Chagos thermocline ridge results in marked variability at synoptic, intraseasonal, and interannual time scales. The Cirene oceanographic cruise collected oceanic, atmospheric, and air—sea flux observations in this region in January—February 2007. The contemporaneous Vasco field experiment complemented these measurements with balloon deployments from the Seychelles. Cirene also contributed to the development of the Indian Ocean observing system via deployment of a mooring and 12 Argo profilers. Unusual conditions prevailed in the Indian Ocean during January and February 2007, following the Indian Ocean dipole climate anomaly of late 2006. Cirene measurements show that the Seychelles—Chagos thermocline ridge had higher-than-usual heat content with subsurface anomalies up to 7°C. The ocean surface was warmer and fresher than average, and unusual eastward currents prevailed down to 800 m. These anomalous conditions had a major impact on tuna fishing in early 2007. Our dataset also sampled the genesis and maturation of Tropical Cyclone Dora, including high surface temperatures and a strong diurnal cycle before the cyclone, followed by a 1.5°C cooling over 10 days. Balloonborne instruments sampled the surface and boundary layer dynamics of Dora. We observed small-scale structures like dry-air layers in the atmosphere and diurnal warm layers in the near-surface ocean. The Cirene data will quantify the impact of these finescale features on the upper-ocean heat budget and atmospheric deep convection.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...