GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-02-06
    Description: A comprehensive quality assessment of the ozone products from 18 limb-viewing satellite instruments is provided by means of a detailed inter-comparison. The ozone climatologies in the form of monthly zonal mean time series covering the upper troposphere to lower mesosphere are obtained from LIMS, SAGE I, SAGE II, UARS-MLS, HALOE, POAM II, POAM III, SMR, OSIRIS, SAGE III, MIPAS, GOMOS, SCIAMACHY, ACE-FTS, ACE-MAESTRO, Aura-MLS, HIRDLS, and SMILES within 1978-2010. The inter-comparisons focus on mean biases based on monthly and annual zonal mean fields, on inter-annual variability and on seasonal cycles. Additionally, the physical consistency of the data sets is tested through diagnostics of the quasi-biennial oscillation and the Antarctic ozone hole. The comprehensive evaluations reveal that the uncertainty in our knowledge of the atmospheric ozone mean state is smallest in the tropical middle stratosphere and in the midlatitude lower/middle stratosphere, where we find a 1σ multi-instrument spread of less than ±5%. While the overall agreement among the climatological data sets is very good for large parts of the stratosphere, individual discrepancies have been identified including unrealistic month-to-month fluctuations, large biases in particular atmospheric regions, or inconsistencies in the seasonal cycle. Notable differences between the data sets exist in the tropical lower stratosphere and at high latitudes, with a multi-instrument spread of ±30% at the tropical tropopause and ±15% at polar latitudes. In particular, large relative differences are identified in the Antarctic polar cap during the time of the ozone hole, with a spread between the monthly zonal mean fields of ±50%. Differences between the climatological data sets are suggested to be partially related to inter-instrumental differences in vertical resolution and geographical sampling. The evaluations as a whole provide guidance on what data sets are the most reliable for applications such as studies of ozone variability, model-measurement comparisons and detection of long-term trends. A detailed comparison versus SAGE II data is presented, which can help identify suitable candidates for long-term data merging studies.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-02-06
    Description: We present the first comprehensive intercomparison of currently available satellite ozone climatologies in the upper troposphere/lower stratosphere (UTLS) (300-70hPa) as part of the Stratosphere-troposphere Processes and their Role in Climate (SPARC) Data Initiative. The Tropospheric Emission Spectrometer (TES) instrument is the only nadir-viewing instrument in this initiative, as well as the only instrument with a focus on tropospheric composition. We apply the TES observational operator to ozone climatologies from the more highly vertically resolved limb-viewing instruments. This minimizes the impact of differences in vertical resolution among the instruments and allows identification of systematic differences in the large-scale structure and variability of UTLS ozone. We find that the climatologies from most of the limb-viewing instruments show positive differences (ranging from 5 to 75%) with respect to TES in the tropical UTLS, and comparison to a zonal mean ozonesonde climatology indicates that these differences likely represent a positive bias for p100hPa. In the extratropics, there is good agreement among the climatologies regarding the timing and magnitude of the ozone seasonal cycle (differences in the peak-to-peak amplitude of 〈15%) when the TES observational operator is applied, as well as very consistent midlatitude interannual variability. The discrepancies in ozone temporal variability are larger in the tropics, with differences between the data sets of up to 55% in the seasonal cycle amplitude. However, the differences among the climatologies are everywhere much smaller than the range produced by current chemistry-climate models, indicating that the multiple-instrument ensemble is useful for quantitatively evaluating these models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-06
    Description: Monthly zonal mean climatologies of atmospheric measurements from satellite instruments can have biases due to the non-uniform sampling of the atmosphere by the instruments. We characterize potential sampling biases in stratospheric trace gas climatologies of the Stratospheric Processes and their Role in Climate (SPARC) Data Initiative using chemical fields from a chemistry climate model simulation and sampling patterns from 16 satellite-borne instruments. The exercise is performed for the long-lived stratospheric trace gases O3 and H2O. Monthly sample biases for O3 exceed 10% for many instruments in the high latitude stratosphere and in the upper troposphere/lower stratosphere, while annual mean sampling biases reach values of up to 20% in the same regions for some instruments. Sampling biases for H2O are generally smaller than for O3, although still notable in the upper troposphere/lower stratosphere and Southern Hemisphere high latitudes. The most important mechanism leading to monthly sampling bias is the non-uniform temporal sampling of many instruments, i.e., the fact that for many instruments, monthly means are produced from measurements which span less than the full month in question. Similarly, annual mean sampling biases are well explained by non-uniformity in the month-to-month sampling by different instruments. Non-uniform sampling in latitude and longitude are shown to also lead to non-negligible sampling biases, which are most relevant for climatologies which are otherwise free of sampling biases due to non-uniform temporal sampling.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-02-06
    Description: Within the SPARC Data Initiative, the first comprehensive assessment of the quality of 13 water vapor products from 11 limb-viewing satellite instruments (LIMS, SAGE II, UARS-MLS, HALOE, POAM III, SMR, SAGE III, MIPAS, SCIAMACHY, ACE-FTS, and Aura-MLS) obtained within the time period 1978-2010 has been performed. Each instrument's water vapor profile measurements were compiled into monthly zonal mean time series on a common latitude-pressure grid. These time series serve as basis for the ‘climatological’ validation approach used within the project. The evaluations include comparisons of monthly or annual zonal mean cross-sections and seasonal cycles in the tropical and extra-tropical upper troposphere and lower stratosphere averaged over one or more years, comparisons of inter-annual variability, and a study of the time evolution of physical features in water vapor such as the tropical tape recorder and polar vortex dehydration. Our knowledge of the atmospheric mean state in water vapor is best in the lower and middle stratosphere of the tropics and mid-latitudes, with a relative uncertainty of ±2-6% (as quantified by the standard deviation of the instruments’ multi-annual means). The uncertainty increases towards the polar regions (±10-15%), the mesosphere (±15%), and the upper troposphere/lower stratosphere below 100 hPa (±30-50%), where sampling issues add uncertainty due to large gradients and high natural variability in water vapor. The minimum found in multi-annual (1998-2008) mean water vapor in the tropical lower stratosphere is 3.5 ppmv (±14%), with slightly larger uncertainties for monthly mean values. The frequently used HALOE water vapor dataset shows consistently lower values than most other datasets throughout the atmosphere, with increasing deviations from the multi-instrument mean below 100 hPa in both the tropics and extra-tropics. The knowledge gained from these comparisons and regarding the quality of the individual datasets in different regions of the atmosphere will help to improve model-measurement comparisons (e.g. for diagnostics such as the tropical tape recorder or seasonal cycles), data merging activities, and studies of climate variability.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: The quasi‐biennial oscillation (QBO) of the equatorial zonal wind leads to zonally symmetric temperature variations in the stratosphere that descend downward. Here we investigate the QBO‐induced temperature anomalies in the tropical tropopause layer (TTL) and detect pronounced longitudinal variations of the signal. In addition, the QBO temperature anomalies show a strong seasonal variability. The magnitude of these seasonal and longitudinal QBO variations is comparable to the magnitude of the well‐known zonal mean QBO signal in the TTL. At the cold point tropopause, the strongest QBO variations of around ±1.6 K are found over regions of active convection such as the West Pacific and Africa during boreal winter. The weakest QBO variations of ±0.25 K are detected over the East Pacific during boreal summer, while the zonal mean signal ranges around ±0.7 K. The longitudinal variations are associated with enhanced convective activity that occurs during QBO cold phases and locally enhances the cold anomalies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Key Points: - A new CHBr3 emission inventory based on natural and anthropogenic sources suggests that the latter account for 12%–28% of the global emissions - In the NH, new anthropogenic estimates increase known natural CHBr3 emissions by up to 70.5%, leading to higher atmospheric CHBr3 levels - At the NH extratropical tropopause, CHBr3 is enhanced by 0.9 ppt Br due to anthropogenic sources thus doubling natural CHBr3 abundances Bromoform (CHBr3) contributes to stratospheric ozone depletion but is not regulated under the Montreal Protocol due to its short lifetime and large natural sources. Here, we show that anthropogenic sources contribute significantly to the amount of CHBr3 transported into the Northern Hemisphere (NH) extratropical stratosphere. We present a new CHBr3 emission inventory comprised of natural and anthropogenic sources, with the latter estimated from ship ballast, power plant cooling and desalination plant brine water. Including anthropogenic sources in the new inventory increases CHBr3 emissions by up to 31.5% globally and 70.5% in the NH. In consequence, atmospheric CHBr3 is also significantly higher, especially over the NH extratropics during boreal winter. Here anthropogenic sources enhance bromine at the tropopause by 0.9 ppt Br, thus doubling natural CHBr3 abundances. For some latitudes, tropopause bromine increases by 2.4 ppt Br suggesting significant contributions of anthropogenic CHBr3 to the NH lowermost stratosphere.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...