GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Polar research 5 (1987), S. 0 
    ISSN: 1751-8369
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geography , Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 413 (2001), S. 64-67 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The transition from the Middle to the Upper Palaeolithic, approximately 40,000–35,000 radiocarbon years ago, marks a turning point in the history of human evolution in Europe. Many changes in the archaeological and fossil record at this time have been associated with the appearance of ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Sedimentology 44 (1997), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Sedimentary successions in small coastal lakes situated from 0 to 11 m above the 7000 year BP shoreline along the western coast of Norway, contain a distinctive deposit, very different from the sediments above and below. The deposit is interpreted to be the result of a tsunami inundating the coastal lakes. An erosional unconformity underlies the tsunami facies and is traced throughout the basins, with most erosion found at the seaward portion of the lakes. The lowermost tsunami facies is a graded or massive sand that locally contains marine fossils. The sand thins and decreases in grain size in a landward direction. Above follows coarse organic detritus with rip-up clasts, here termed ‘organic conglomerate’, and finer organic detritus. The tsunami unit generally fines and thins upwards. The higher basins (6–11 m above the 7000 year shoreline) show one sand bed, whereas basins closer to the sea level 7000 years ago, may show several sand beds separated by organic detritus. These alternations in the lower basins may reflect repeated waves of sea water entering the lakes. In basins that were some few metres below sea level at 7000 years BP, the tsunami deposit is more minerogenic and commonly present as graded sand beds, but also in some of these shallow marine basins organic-rich facies occur between the sand beds. The total thickness of the tsunami deposit is 20–100 cm in most studied sites. An erosional and depositional model of the tsunami facies is developed.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-01
    Description: The evolution of past global ice sheets is highly uncertain. One example is the missing ice problem during the Last Glacial Maximum (LGM, 26 000-19 000 years before present) – an apparent 8-28 m discrepancy between far-field sea level indicators and modelled sea level from ice sheet reconstructions. In the absence of ice sheet reconstructions, researchers often use marine δ 18 O proxy records to infer ice volume prior to the LGM. We present a global ice sheet reconstruction for the past 80 000 years, called PaleoMIST 1.0, constructed inde- pendently of far-field sea level and δ 18 O proxy records. Our reconstruction is compatible with LGM far-field sea-level records without requiring extra ice volume, thus solving the missing ice problem. However, for Marine Isotope Stage 3 (57 000-29 000 years before present) - a pre-LGM period - our reconstruction does not match proxy-based sea level reconstructions, indicating the relationship between marine δ 18 O and sea level may be more complex than assumed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-01
    Description: Because continuous and high-resolution records are scarce in the polar Urals, a multiproxy study was carried out on a 54 m long sediment succession (Co1321) from Lake Bolshoye Shchuchye. The sedimentological, geochemical, pollen and chironomid data suggest that glaciers occupied the lake's catchment during the cold and dry MIS 2 and document a change in ice extent around 23.5–18 cal ka bp. Subsequently, meltwater input, sediment supply and erosional activity decreased as local glaciers progressively melted. The vegetation around the lake comprised open, herb and grass-dominated tundra-steppe until the Bølling-Allerød, but shows a distinct change to probably moister conditions around 17–16 cal ka bp. Local glaciers completely disappeared during the Bølling-Allerød, when summer air temperatures were similar to today and low shrub tundra became established. The Younger Dryas is confined by distinct shifts in the pollen and chironomid records pointing to drier conditions. The Holocene is characterised by a denser vegetation cover, stabilised soil conditions and decreased minerogenic input, especially during the local thermal maximum between c. 10 and 5 cal ka bp. Subsequently, present-day vegetation developed and summer air temperatures decreased to modern, except for two intervals, which may represent the Little Ice Age and Medieval Warm Period.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-02-10
    Description: This paper summarizes the results of studies of the Late Weichselian periglacial environments carried out in key areas of northern Eurasia by several QUEEN teams (European Science Foundation (ESF) programme: “Quaternary Environment of the Eurasian North”). The palaeoglaciological boundary conditions are defined by geological data on timing and extent of the last glaciation obtained in the course of the EU funded project “Eurasian Ice Sheets”. These data prove beyond any doubt, that with the exception of the northwestern fringe of the Taymyr Peninsula, the rest of the Eurasian mainland and Severnaya Zemlya were not affected by the Barents–Kara Sea Ice Sheet during the Last Glacial Maximum (LGM). Inversed modelling based on these results shows that a progressive cooling which started around 30 ka BP, caused ice growth in Scandinavia and the northwestern areas of the Barents–Kara Sea shelf, due to a maritime climate with relatively high precipitation along the western flank of the developing ice sheets. In the rest of the Eurasian Arctic extremely low precipitation rates (less than 50 mm yr−1), did not allow ice sheet growth in spite of the very cold temperatures. Palaeoclimatic and palaeoenvironmental conditions for the time prior to, during, and after the LGM have been reconstructed for the non-glaciated areas around the LGM ice sheet with the use of faunal and vegetation records, permafrost, eolian sediments, alluvial deposits and other evidences. The changing environment, from interstadial conditions around 30 ka BP to a much colder and drier environment at the culmination of the LGM at 20–15 ka BP, and the beginning of warming around 15 ka BP have been elaborated from the field data, which fits well with the modelling results.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: The maximum limits of the Eurasian ice sheets during four glaciations have been reconstructed: (1) the Late Saalian (〉140 ka), (2) the Early Weichselian (100–80 ka), (3) the Middle Weichselian (60–50 ka) and (4) the Late Weichselian (25–15 ka). The reconstructed ice limits are based on satellite data and aerial photographs combined with geological field investigations in Russia and Siberia, and with marine seismic- and sediment core data. The Barents-Kara Ice Sheet got progressively smaller during each glaciation, whereas the dimensions of the Scandinavian Ice Sheet increased. During the last Ice Age the Barents-Kara Ice Sheet attained its maximum size as early as 90–80,000 years ago when the ice front reached far onto the continent. A regrowth of the ice sheets occurred during the early Middle Weichselian, culminating about 60–50,000 years ago. During the Late Weichselian the Barents-Kara Ice Sheet did not reach the mainland east of the Kanin Peninsula, with the exception of the NW fringe of Taimyr. A numerical ice-sheet model, forced by global sea level and solar changes, was run through the full Weichselian glacial cycle. The modeling results are roughly compatible with the geological record of ice growth, but the model underpredicts the glaciations in the Eurasian Arctic during the Early and Middle Weichselian. One reason for this is that the climate in the Eurasian Arctic was not as dry then as during the Late Weichselian glacial maximum.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Quaternary Glaciations Extent and Chronology - Part I: Europe. , ed. by Ehlers, J., Gibbard, P. L. and Hughes, P. D. Developments in quaternary sciences, 2 (1). Elsevier, Amsterdam, pp. 369-378. ISBN 0-444-53447-4
    Publication Date: 2019-09-04
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: The evolution of past global ice sheets is highly uncertain. One example is the missing ice problem during the Last Glacial Maximum (LGM, 26 000-19 000 years before present) – an apparent 8-28 m discrepancy between far-field sea level indicators and modelled sea level from ice sheet reconstructions. In the absence of ice sheet reconstructions, researchers often use marine δ18O proxy records to infer ice volume prior to the LGM. We present a global ice sheet reconstruction for the past 80 000 years, called PaleoMIST 1.0, constructed independently of far-field sea level and δ18O proxy records. Our reconstruction is compatible with LGM far-field sea-level records without requiring extra ice volume, thus solving the missing ice problem. However, for Marine Isotope Stage 3 (57 000-29 000 years before present) - a pre-LGM period - our reconstruction does not match proxy-based sea level reconstructions, indicating the relationship between marine δ18O and sea level may be more complex than assumed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Mangerud, Jan; Astakhov, Valery I; Murray, Andrew Sean; Svendsen, John Inge (2001): The chronology of a large ice-dammed lake and the Barents-Kara ice sheet advances, northern Russia. Global and Planetary Change, QUEEN special issue, 31(1), 321-336, https://doi.org/10.1016/S0921-8181(01)00127-8
    Publication Date: 2023-05-12
    Description: Beach and shoreface sediments deposited in the more than 800-km long ice-dammed Lake Komi in northern European Russia have been investigated and dated. The lake flooded the lowland areas between the Barents-Kara Ice Sheet in the north and the continental drainage divide in the south. Shoreline facies have been dated by 18 optical stimulated luminescence (OSL) dates, most of which are closely grouped in the range 80-100 ka, with a mean of 88 +/- 3 ka. This implies that that the Barents-Kara Ice Sheet had its Late Pleistocene maximum extension during the Early Weichselian, probably in the cold interval (Rederstall) between the Brørup and Odderade interstadials of western Europe, correlated with marine isotope stage 5b. This is in strong contrast to the Scandinavian and North American ice sheets, which had their maxima in isotope stage 2, about 20 ka. Field and air photo interpretations suggest that Lake Komi was dammed by the ice advance, which formed the Harbei-Harmon-Sopkay Moraines. These has earlier been correlated with the Markhida moraine across the Pechora River Valley and its western extension. However, OSL dates on fluvial sediments below the Markhida moraine have yielded ages as young as 60 ka. This suggests that the Russian mainland was inundated by two major ice sheet advances from the Barents-Kara seas after the last interglacial: one during the Early Weichselian (about 90 ka) that dammed Lake Komi and one during the Middle Weichselian (about 60 ka). Normal fluvial drainage prevailed during the Late Weichselian, when the ice front was located offshore.
    Keywords: agedetermination; Bolotny_Mys; Bolotny Mys; Byzovaya Ravine; Byz-rav; Garevo; Novik-Bozh; OUTCROP; Outcrop sample; Ozornoye; Pechora1997; Quaternary Environment of the Eurasian North; QUEEN; QUEEN_Exped; Russia; Sampling on land
    Type: Dataset
    Format: application/zip, 8 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...