GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Margari, Vasiliki; Skinner, Luke C; Hodell, David A; Martrat, Belén; Toucanne, Samuel; Grimalt, Joan O; Gibbard, Philip L; Lunkka, Juha Pekka; Tzedakis, Polychronis C (2014): Land-ocean changes on orbital and millennial time scales and the penultimate glaciation. Geology, 42(3), 183-186, https://doi.org/10.1130/G35070.1
    Publication Date: 2023-09-16
    Description: Past glacials can be thought of as natural experiments in which variations in boundary conditions influenced the character of climate change. However, beyond the last glacial, an integrated view of orbital- and millennial-scale changes and their relation to the record of glaciation has been lacking. Here, we present a detailed record of variations in the land-ocean system from the Portuguese margin during the penultimate glacial and place it within the framework of ice-volume changes, with particular reference to European ice-sheet dynamics. The interaction of orbital- and millennial-scale variability divides the glacial into an early part with warmer and wetter overall conditions and prominent climate oscillations, a transitional mid-part, and a late part with more subdued changes as the system entered a maximum glacial state. The most extreme event occurred in the mid-part and was associated with melting of the extensive European ice sheet and maximum discharge from the Fleuve Manche river. This led to disruption of the meridional overturning circulation, but not a major activation of the bipolar seesaw. In addition to stadial duration, magnitude of freshwater forcing, and background climate, the evidence also points to the influence of the location of freshwater discharges on the extent of interhemispheric heat transport.
    Keywords: AGE; Alkenone, C37:4; Calculated from UK'37 (Müller et al, 1998); CALYPSO; Calypso Corer; DEPTH, sediment/rock; GEOSCIENCES, MARMARCORE; Marion Dufresne (1995); MD01-2444; MD123; Sea surface temperature, annual mean
    Type: Dataset
    Format: text/tab-separated-values, 318 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-02-10
    Description: This paper summarizes the results of studies of the Late Weichselian periglacial environments carried out in key areas of northern Eurasia by several QUEEN teams (European Science Foundation (ESF) programme: “Quaternary Environment of the Eurasian North”). The palaeoglaciological boundary conditions are defined by geological data on timing and extent of the last glaciation obtained in the course of the EU funded project “Eurasian Ice Sheets”. These data prove beyond any doubt, that with the exception of the northwestern fringe of the Taymyr Peninsula, the rest of the Eurasian mainland and Severnaya Zemlya were not affected by the Barents–Kara Sea Ice Sheet during the Last Glacial Maximum (LGM). Inversed modelling based on these results shows that a progressive cooling which started around 30 ka BP, caused ice growth in Scandinavia and the northwestern areas of the Barents–Kara Sea shelf, due to a maritime climate with relatively high precipitation along the western flank of the developing ice sheets. In the rest of the Eurasian Arctic extremely low precipitation rates (less than 50 mm yr−1), did not allow ice sheet growth in spite of the very cold temperatures. Palaeoclimatic and palaeoenvironmental conditions for the time prior to, during, and after the LGM have been reconstructed for the non-glaciated areas around the LGM ice sheet with the use of faunal and vegetation records, permafrost, eolian sediments, alluvial deposits and other evidences. The changing environment, from interstadial conditions around 30 ka BP to a much colder and drier environment at the culmination of the LGM at 20–15 ka BP, and the beginning of warming around 15 ka BP have been elaborated from the field data, which fits well with the modelling results.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: The maximum limits of the Eurasian ice sheets during four glaciations have been reconstructed: (1) the Late Saalian (〉140 ka), (2) the Early Weichselian (100–80 ka), (3) the Middle Weichselian (60–50 ka) and (4) the Late Weichselian (25–15 ka). The reconstructed ice limits are based on satellite data and aerial photographs combined with geological field investigations in Russia and Siberia, and with marine seismic- and sediment core data. The Barents-Kara Ice Sheet got progressively smaller during each glaciation, whereas the dimensions of the Scandinavian Ice Sheet increased. During the last Ice Age the Barents-Kara Ice Sheet attained its maximum size as early as 90–80,000 years ago when the ice front reached far onto the continent. A regrowth of the ice sheets occurred during the early Middle Weichselian, culminating about 60–50,000 years ago. During the Late Weichselian the Barents-Kara Ice Sheet did not reach the mainland east of the Kanin Peninsula, with the exception of the NW fringe of Taimyr. A numerical ice-sheet model, forced by global sea level and solar changes, was run through the full Weichselian glacial cycle. The modeling results are roughly compatible with the geological record of ice growth, but the model underpredicts the glaciations in the Eurasian Arctic during the Early and Middle Weichselian. One reason for this is that the climate in the Eurasian Arctic was not as dry then as during the Late Weichselian glacial maximum.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...