GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The observed spatial patterns of temperature change in the free atmosphere from 1963 to 1987 are similar to those predicted by state-of-the-art climate models incorporating various combinations of changes in carbon dioxide, anthropogenic sulphate aerosol and stratospheric ozone ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 439 (2006), S. 675-675 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] We have analysed a suite of 12 state-of-the-art climate models and show that ocean warming and sea-level rise in the twentieth century were substantially reduced by the colossal eruption in 1883 of the volcano Krakatoa in the Sunda strait, Indonesia. Volcanically induced cooling of the ocean ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 14 (1998), S. 781-790 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract  The use of pattern correlations to compare observed temperature changes with predicted anthropogenic effects has greatly increased our confidence in the reality of these effects. Here we use synthetic observed data to determine the expected behavior of the pattern correlation statistic, R(t), and hence clarify some results obtained in previous studies. We show that, for the specific case considered here (near-surface temperature changes), even with a perfectly-known signal, expected values of R(t) currently should be only of order 0.3–0.5, as observed; that R(t) may show markedly non-linear variations in time; that the CO2-alone signal pattern should be difficult to detect today primarily because of data coverage deficiencies; and why the signal due to combined CO2-aerosol forcing is easier to detect than either the CO2-alone or aerosol-alone signals. Finally, we show that little is to be gained at present by searching for a time-dependent signal compared with a representative constant signal pattern.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. Four time-dependent greenhouse warming experiments were performed with the same global coupled atmosphere-ocean model, but with each simulation using initial conditions from different ”snapshots" of the control run climate. The radiative forcing – the increase in equivalent CO2 concentrations from 1985–2035 specified in the Intergovernmental Panel on Climate Change (IPCC) scenario A – was identical in all four 50-year integrations. This approach to climate change experiments is called the Monte Carlo technique and is analogous to a similar experimental set-up used in the field of extended range weather forecasting. Despite the limitation of a very small sample size, this approach enables the estimation of both a mean response and the ”between-experiment" variability, information which is not available from a single integration. The use of multiple realizations provides insights into the stability of the response, both spatially, seasonally and in terms of different climate variables. The results indicate that the time evolution of the global mean warming signal is strongly dependent on the initial state of the climate system. While the individual members of the ensemble show considerable variation in the pattern and amplitude of near-surface temperature change after 50 years, the ensemble mean climate change pattern closely resembles that obtained in a 100-year integration performed with the same model. In global mean terms, the climate change signals for near surface temperature, the hydrological cycle and sea level significantly exceed the variability among the members of the ensemble. Due to the high internal variability of the modelled climate system, the estimated detection time of the global mean temperature change signal is uncertain by at least one decade. While the ensemble mean surface temperature and sea level fields show regionally significant responses to greenhouse-gas forcing, it is not possible to identify a significant response in the precipitation and soil moisture fields, variables which are spatially noisy and characterized by large variability between the individual integrations.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Four time-dependent greenhouse warming experiments were performed with the same global coupled atmosphere-ocean model, but with each simulation using initial conditions from different “snapshots” of the control run climate. The radiative forcing — the increase in equivalent CO2 concentrations from 1985–2035 specified in the Intergovernmental Panel on Climate Change (IPCC) scenario A — was identical in all four 50-year integrations. This approach to climate change experiments is called the Monte Carlo technique and is analogous to a similar experimental set-up used in the field of extended range weather forecasting. Despite the limitation of a very small sample size, this approach enables the estimation of both a mean response and the “between-experiment” variability, information which is not available from a single integration. The use of multiple realizations provides insights into the stability of the response, both spatially, seasonally and in terms of different climate variables. The results indicate that the time evolution of the global mean warming signal is strongly dependent on the initial state of the climate system. While the individual members of the ensemble show considerable variation in the pattern and amplitude of near-surface temperature change after 50 years, the ensemble mean climate change pattern closely resembles that obtained in a 100-year integration performed with the same model. In global mean terms, the climate change signals for near surface temperature, the hydrological cycle and sea level significantly exceed the variability among the members of the ensemble. Due to the high internal variability of the modelled climate system, the estimated detection time of the global mean temperature change signal is uncertain by at least one decade. While the ensemble mean surface temperature and sea level fields show regionally significant responses to greenhouse-gas forcing, it is not possible to identify a significant response in the precipitation and soil moisture fields, variables which are spatially noisy and characterized by large variability between the individual integrations.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 11 (1995), S. 71-84 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Due to restrictions in the available computing resources and a lack of suitable observational data, transient climate change experiments with global coupled ocean-atmosphere models have been started from an initial state at equilibrium with the present day forcing. The historical development of greenhouse gas forcing from the onset of industrialization until the present has therefore been neglected. Studies with simplified models have shown that this “cold start” error leads to a serious underestimation of the anthropogenic global warming. In the present study, a 150-year integration has been carried out with a global coupled ocean-atmosphere model starting from the greenhouse gas concentration observed in 1935, i.e., at an early time of industrialization. The model was forced with observed greenhouse gas concentrations up to 1985, and with the equivalent C02 concentrations stipulated in Scenario A (“Business as Usual”) of the Intergovernmental Panel on Climate Change from 1985 to 2085. The early starting date alleviates some of the cold start problems. The global mean near surface temperature change in 2085 is about 0.3 K (ca. 10%) higher in the early industrialization experiment than in an integration with the same model and identical Scenario A greenhouse gas forcing, but with a start date in 1985. Comparisons between the experiments with early and late start dates show considerable differences in the amplitude of the regional climate change patterns, particularly for sea level. The early industrialization experiment can be used to obtain a first estimate of the detection time for a greenhouse-gas-induced near-surface temperature signal. Detection time estimates are obtained using globally and zonally averaged data from the experiment and a long control run, as well as principal component time series describing the evolution of the dominant signal and noise modes. The latter approach yields the earliest detection time (in the decade 1990–2000) for the time-evolving near-surface temperature signal. For global-mean temperatures or for temperatures averaged between 45°N and 45°S, the signal detection times are in the decades 2015–2025 and 2005–2015, respectively. The reduction of the “cold start” error in the early industrialization experiment makes it possible to separate the near-surface temperature signal from the noise about one decade earlier than in the experiment starting in 1985. We stress that these detection times are only valid in the context of the coupled model's internally-generated natural variability, which possibly underestimates low frequency fluctuations and does not incorporate the variance associated with changes in external forcing factors, such as anthropogenic sulfate aerosols, solar variability or volcanic dust.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Climate dynamics 8 (1993), S. 265-276 
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract This investigation addresses two general issues regarding the role of pattern similarity statistics in greenhouse warming detection studies: normalization, and the relative merits of centered versus uncentered statistics. A pattern correlation statistic is used to search for the greenhouse warming signals predicted by five different models in the observed records of land and ocean surface temperature changes. Two forms of this statistic were computed: R (t), which makes use of nonnormalized data, and $$\tilde R$$ (t), which employs point-wise normalized data in order to focus the search on regions where the signal-to-noise ratio is large. While there are no trends in the R (t) time series, the time series of $$\tilde R$$ (t) show large positive trends. However, it is not possible to infer from the $$\tilde R$$ (t) results that the observed pattern of temperature change is, in fact, becoming increasingly similar to the model-predicted signal. This is because point-wise normalization of the observed and simulated mean change fields by a single common field introduces a “common factor” effect, which means that the quantities being compared should show some similarity a priori. This does not necessarily make normalization inapplicable, because the detection test involves seeking a trend in the similarity statistic. We show, however, that trends in $$\tilde R$$ (t) must arise almost completely from the observed data, and cannot be an indicator of increasing observed data/signal similarity. We also compare the information provided by centered statistics such as R(t) and the uncentered C(t) statistic introduced by Barnett. We show that C(t) may be expressed as the weighted sum of two terms, one proportional to R(t) and the other proportional to the observed spatial mean. For near-surface temperatures, the spatial average term dominates over the R(t) term. In this case the use of C(t) is equivalent to the use of spatial-mean temperature. We conclude that at present, the most informative pattern correlation statistic for detection purposes is R(t), the standard product-moment correlation coefficient between the observed and model fields. Our failure to find meaningful trends in R(t) may be due to the fact that the signal is being obscured by the background noise of natural variability, and/or because of incorrect model signals or sensitivities.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  EPIC3Journal of Geophysical Research, Volume 110, D09107
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Springer
    In:  In: Supercomputer '90 : Anwendungen, Architekturen, Trends ; Mannheim, 21. - 23. Juni 1990 ; proceedings. , ed. by Meuer, H. W. Informatik-Fachberichte, 250 . Springer, Berlin, Germany, .. ISBN 3-540-52792-3
    Publication Date: 2019-08-07
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-10-23
    Description: Since the late 1970s, satellite-based instruments have monitored global changes in atmospheric temperature. These measurements reveal multidecadal tropospheric warming and stratospheric cooling, punctuated by short-term volcanic signals of reverse sign. Similar long- and short-term temperature signals occur in model simulations driven by human-caused changes in atmospheric composition and natural variations...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...