GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Communications Biology 1 (2018): 177, doi:10.1038/s42003-018-0183-7.
    Description: The oceans are warming and coral reefs are bleaching with increased frequency and severity, fueling concerns for their survival through this century. Yet in the central equatorial Pacific, some of the world’s most productive reefs regularly experience extreme heat associated with El Niño. Here we use skeletal signatures preserved in long-lived corals on Jarvis Island to evaluate the coral community response to multiple successive heatwaves since 1960. By tracking skeletal stress band formation through the 2015-16 El Nino, which killed 95% of Jarvis corals, we validate their utility as proxies of bleaching severity and show that 2015-16 was not the first catastrophic bleaching event on Jarvis. Since 1960, eight severe (〉30% bleaching) and two moderate (〈30% bleaching) events occurred, each coinciding with El Niño. While the frequency and severity of bleaching on Jarvis did not increase over this time period, 2015–16 was unprecedented in magnitude. The trajectory of recovery of this historically resilient ecosystem will provide critical insights into the potential for coral reef resilience in a warming world.
    Description: Funding for this study was provided by National Science Foundation awards OCE 1537338, OCE 1605365, and OCE 1031971 to A.L.C., and the Robertson Foundation to A.L.C., National Science Foundation Graduate Research Fellowships to T.M.D. and A.E.A., and a National Defense Science and Engineering Graduate Fellowship to H.E.R.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: Author Posting. © Company of Biologists, 2021. This article is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 224(5), (2021): jeb236745, https://doi.org/10.1242/jeb.236745.
    Description: Parental effects can prepare offspring for different environments and facilitate survival across generations. We exposed parental populations of the estuarine anemone, Nematostella vectensis, from Massachusetts to elevated temperatures and quantified larval mortality across a temperature gradient. We found that parental exposure to elevated temperatures resulted in a consistent increase in larval thermal tolerance, as measured by the temperature at which 50% of larvae die (LT50), with a mean increase in LT50 of 0.3°C. Larvae from subsequent spawns returned to baseline thermal thresholds when parents were returned to normal temperatures, indicating plasticity in these parental effects. Histological analyses of gametogenesis in females suggested that these dynamic shifts in larval thermal tolerance may be facilitated by maternal effects in non-overlapping gametic cohorts. We also compared larvae from North Carolina (a genetically distinct population with higher baseline thermal tolerance) and Massachusetts parents, and observed that larvae from heat-exposed Massachusetts parents had thermal thresholds comparable to those of larvae from unexposed North Carolina parents. North Carolina parents also increased larval thermal tolerance under the same high-temperature regime, suggesting that plasticity in parental effects is an inherent trait for N. vectensis. Overall, we find that larval thermal tolerance in N. vectensis shows a strong genetic basis and can be modulated by parental effects. Further understanding of the mechanisms behind these shifts can elucidate the fate of thermally sensitive ectotherms in a rapidly changing thermal environment.
    Description: The Betty and Gordon Moore Foundation [4598 to A.M.T.] provided funding for this work. Additional funding for H.E.R. was provided by the National Defense Science and Engineering Graduate Fellowship Program, Gates Millennium Scholars Program, the Martin Family Fellowship for Sustainability and the American Association of University Women. C.-Y.C. and M.C.G. were funded by the Stowers Institute for Medical Research.
    Description: 2022-03-11
    Keywords: Acclimation ; Cnidaria ; LT50 ; Maternal effects ; Paternal effects ; Thermal limits
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Cellular and Infection Microbiology 4 (2015): 176, doi:10.3389/fcimb.2014.00176.
    Description: In the last two decades, genetic and genomic studies have revealed the astonishing diversity and ubiquity of microorganisms. Emergence and expansion of the human microbiome project has reshaped our thinking about how microbes control host health—not only as pathogens, but also as symbionts. In coral reef environments, scientists have begun to examine the role that microorganisms play in coral life history. Herein, we review the current literature on coral-microbe interactions within the context of their role in evolution, development, and ecology. We ask the following questions, first posed by McFall-Ngai et al. (2013) in their review of animal evolution, with specific attention to how coral-microbial interactions may be affected under future environmental conditions: (1) How do corals and their microbiome affect each other's genomes? (2) How does coral development depend on microbial partners? (3) How is homeostasis maintained between corals and their microbial symbionts? (4) How can ecological approaches deepen our understanding of the multiple levels of coral-microbial interactions? Elucidating the role that microorganisms play in the structure and function of the holobiont is essential for understanding how corals maintain homeostasis and acclimate to changing environmental conditions.
    Description: Support for this work was provided to Janelle R. Thompson by the National Research Foundation of Singapore through the Center for Environmental Sensing and Modeling (CENSAM) and by the MIT Civil and Environmental Engineering Department; to Hanny E. Rivera by the MIT Presidential Fellowship; to Collin J. Closek by the National Geographic Society; and to Mónica Medina by NSF projects IOS 1146880 and IOS 0926906.
    Keywords: Coral ; Holobiont ; Metamorphosis ; Biological ; Symbiosis ; Pollution and global change ; Ecosystem ; Bacterial interactions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © Company of Biologists, 2019. This article is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 222(21), (2019): jeb.205393, doi:10.1242/jeb.205393.
    Description: Considerable advances in chronobiology have been made through controlled laboratory studies, but distinct temporal rhythms can emerge under natural environmental conditions. Lab-reared Nematostella vectensis sea anemones exhibit circadian behavioral and physiological rhythms. Given that these anemones inhabit shallow estuarine environments subject to tidal inputs, it was unclear whether circadian rhythmicity would persist following entrainment in natural conditions, or whether circatidal periodicity would predominate. Nematostella were conditioned within a marsh environment, where they experienced strong daily temperature cycles as well as brief tidal flooding around the full and new moons. Upon retrieval, anemones exhibited strong circadian (∼24 h) activity rhythms under a light–dark cycle or continuous darkness, but reduced circadian rhythmicity under continuous light. However, some individuals in each light condition showed circadian rhythmicity, and a few individuals showed circatidal rhythmicity. Consistent with the behavioral studies, a large number of transcripts (1640) exhibited diurnal rhythmicity compared with very few (64) with semidiurnal rhythmicity. Diurnal transcripts included core circadian regulators, and 101 of 434 (23%) genes that were previously found to be upregulated by exposure to ultraviolet radiation. Together, these behavioral and transcriptional studies show that circadian rhythmicity predominates and suggest that solar radiation drives physiological cycles in this sediment-dwelling subtidal animal.
    Description: A.M.T., R.R.H. and O.L. were supported by the Gordon and Betty Moore Foundation (grant number 4598 to A.M.T. and O.L.). H.E.R. was funded by a Martin Family Fellowship for Sustainability at Massachusetts Institute of Technology and an American dissertation grant from the American Association of University Women.
    Description: 2020-10-14
    Keywords: Chronobiology ; Circadian ; Cnidarian ; Entrainment ; Subtidal ; UV radiation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...