GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-01-08
    Description: Natural cycles in the seawater partial pressure of carbon dioxide (CO2) in the Gulf of Maine, which vary in surface waters from ~250 to 550 µatm seasonally, provide an opportunity to observe how the life cycle and phenology of the shelled pteropod Limacina retroversa responds to changing food, temperature and carbonate chemistry conditions. Distributional, hydrographic, and physiological sampling suggest that pteropod populations are located in the upper portion of the water column (0–150 m) with a maximum abundance above 50 m. Gene expression and shell condition measurements show that the population already experiences biomineralization stress in the winter months when measured aragonite saturation state was at a seasonal low (though slightly oversaturated), reinforcing the usefulness of this organism as a bio-indicator for pelagic ecosystem response to ocean acidification. There appear to be two reproductive events per year with one pulse timed to coincide with the spring bloom, the period with highest respiration rate, fluorescence, and pH, and a second more extended pulse in the late summer and fall when saturation states remain high and fluorescence begins to decline. During the fall there is transcriptomic evidence of lipid storage for overwintering, allowing the second generation to survive the period of low food and aragonite saturation state. Based on these observations we predict that in the future pteropods will likely be most vulnerable to changing CO2 regionally during the fall reproductive event when CO2 concentration already naturally rises and when there is the added stress of generating lipid stores.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-07
    Description: Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 143 (2006): 397-403, doi:10.1016/j.cbpb.2005.12.017.
    Description: Steroid metabolism studies have yielded evidence of 17β-hydroxysteroid dehydrogenase (17β-HSD) activity in corals. This project was undertaken to clarify whether there are multiple isoforms of 17β-HSD, whether activity levels vary seasonally, and if zooxanthellae contribute to activity. 17β-HSD activity was characterized in zooxanthellate and azooxanthellate coral fragments collected in summer and winter and in zooxanthellae cultured from M. capitata. More specifically, 17β-HSD activity was characterized with regard to steroid substrate and inhibitor specificity, coenzyme specificity, and Michaelis constants for estradiol (E2) and NADP+. Six samples each of M. capitata and T. coccinea (three summer, three winter) were assayed with E2 and NADP+. Specific activity levels (pmol/mg protein) varied 10-fold among M. capitata samples and 6-fold among T. coccinea samples. There was overlap of activity levels between summer and winter samples. NADP+/NAD+ activity ratios varied from 1.6 to 22.2 for M. capatita, 2.3 to 3.8 for T. coccinea and 0.7 to 1.1 for zooxanthellae. Coumestrol was the most inhibitory of the steroids and phytoestrogens tested. Our data confirm that corals and zooxanthellae contain 17β-HSD and are consistent with the presence of more than one isoform of the enzyme.
    Description: Support for this work was provided by the EPA STAR fellowship program and the University of Hawaii Sea Grant College Program.
    Keywords: 17β-hydroxysteroid dehydrogenase ; Steroid ; Coral ; Invertebrate ; Zooxanthellae ; Phytoestrogens ; Estradiol ; Scleractinia
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 821352 bytes
    Format: 786978 bytes
    Format: 565204 bytes
    Format: 2043276 bytes
    Format: 878144 bytes
    Format: 715766 bytes
    Format: 2754740 bytes
    Format: 3167300 bytes
    Format: 1849076 bytes
    Format: 585180 bytes
    Format: 1211904 bytes
    Format: image/tiff
    Format: image/tiff
    Format: image/tiff
    Format: image/tiff
    Format: image/tiff
    Format: image/tiff
    Format: image/tiff
    Format: image/tiff
    Format: image/tiff
    Format: image/tiff
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecotoxicology 16 (2007): 5-13, doi:10.1007/s10646-006-0121-1.
    Description: Cnidarians occupy a key evolutionary position as basal metazoans and are ecologically important as predators, prey and structure-builders. Bioregulatory molecules (e.g., amines, peptides and steroids) have been identified in cnidarians, but cnidarian signaling pathways remain poorly characterized. Cnidarians, especially hydras, are regularly used in toxicity testing, but few studies have used cnidarians in explicit testing for signal disruption. Sublethal endpoints developed in cnidarians include budding, regeneration, gametogenesis, mucus production and larval metamorphosis. Cnidarian genomic databases, microarrays and other molecular tools are increasingly facilitating mechanistic investigation of signaling pathways and signal disruption. Elucidation of cnidarian signaling processes in a comparative context can provide insight into the evolution and diversification of metazoan bioregulation. Characterizing signaling and signal disruption in cnidarians may also provide unique opportunities for evaluating risk to valuable marine resources, such as coral reefs.
    Keywords: Bioregulation ; Cnidaria ; Coral ; Endocrine ; Signal Disruption
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 72795 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © 2009 Reitzel and Tarrant. This is an open-access article distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Evolutionary Biology 9 (2009): 230, doi:10.1186/1471-2148-9-230.
    Description: Nuclear receptors are a superfamily of metazoan transcription factors that regulate diverse developmental and physiological processes. Sequenced genomes from an increasing number of bilaterians have provided a more complete picture of duplication and loss of nuclear receptors in protostomes and deuterostomes but have left open the question of which nuclear receptors were present in the cnidarian-bilaterian ancestor. In addition, nuclear receptor expression and function are largely uncharacterized within cnidarians, preventing determination of conserved and novel nuclear receptor functions in the context of animal evolution. Here we report the first complete set of nuclear receptors from a cnidarian, the starlet sea anemone Nematostella vectensis. Genomic searches using conserved DNA- and ligand-binding domains revealed seventeen nuclear receptors in N. vectensis. Phylogenetic analyses support N. vectensis orthologs of bilaterian nuclear receptors in four nuclear receptor subfamilies within nuclear receptor family 2 (COUP-TF, TLL, HNF4, TR2/4) and one putative ortholog of GCNF (nuclear receptor family 6). Other N. vectensis genes grouped well with nuclear receptor family 2 but represented lineage-specific duplications somewhere within the cnidarian lineage and were not clear orthologs of bilaterian genes. Three nuclear receptors were not well-supported within any particular nuclear receptor family. The seventeen nuclear receptors exhibited distinct developmental expression patterns, with expression of several nuclear receptors limited to a subset of developmental stages. N. vectensis contains a diverse complement of nuclear receptors including orthologs of several bilaterian nuclear receptors. Novel nuclear receptors in N. vectensis may be ancient genes lost from triploblastic lineages or may represent cnidarian-specific radiations. Nuclear receptors exhibited distinct developmental expression patterns, which are consistent with diverse regulatory roles for these genes. Understanding the evolutionary relationships and developmental expression of the N. vectensis nuclear receptor complement provides insight into the evolution of the nuclear receptor superfamily and a foundation for mechanistic characterization of cnidarian nuclear receptor function.
    Description: We are grateful for financial support from the Woods Hole Oceanographic Institution (WHOI) through the Tropical Research Initiative, the Ocean Life Institute (AMT), the Academic Programs Office, and to the Beacon Institute for Rivers and Estuaries (AMR).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/postscript
    Format: application/pdf
    Format: application/msword
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Insect Physiology 57 (2011): 665-675, doi:10.1016/j.jinsphys.2011.03.007.
    Description: Calanoid copepods, such as Calanus finmarchicus, are a key component of marine food webs. C. finmarchicus undergoes a facultative diapause during juvenile development, which profoundly affects their seasonal distribution and availability to their predators. The current ignorance of how copepod diapause is regulated limits understanding of copepod population dynamics, distribution, and ecosystem interactions. Heat shock proteins (Hsps) are a superfamily of molecular chaperones characteristically upregulated in response to stress conditions and frequently associated with diapause in other taxa. In this study, 8 heat shock proteins were identified in C. finmarchicus C5 copepodids (Hsp21, Hsp22, p26, Hsp90, and 4 forms of Hsp70), and expression of these transcripts was characterized in response to handling stress and in association with diapause. Hsp21, Hsp22, and Hsp70A (cytosolic subfamily) were induced by handling stress. Expression of Hsp70A was also elevated in shallow active copepodids relative to deep diapausing copepodids, which may reflect induction of this gene by varied stressors in active animals. In contrast, expression of Hsp22 was elevated in deep diapausing animals; Hsp22 may play a role both in short-term stress responses and in protecting proteins from degradation during diapause. Expression of most of the Hsps examined did not vary in response to diapause, perhaps because the diapause of C. finmarchicus is not associated with the extreme environmental conditions (e.g., freezing, desiccation) experienced by many other taxa, such as overwintering insects or Artemia cysts.
    Description: Funding for AMA was provided by the WHOI Summer Student Fellowship Program and an EPA STAR fellowship.
    Keywords: Copepod ; Crustacean ; Diapause ; Heat shock protein ; Stress response
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © National Shellfisheries Association, 2012. This article is posted here by permission of National Shellfisheries Association for personal use, not for redistribution. The definitive version was published in Journal of Shellfish Research 31 (2012): 505-513, doi:10.2983/035.031.0210.
    Description: Epizootic shell disease (ESD) has been reported widely in American lobster (Homarus americanus, Milne Edwards) in southern New England. The appearance of irregular, deep lesions—characteristic of ESD—has been associated previously with elevated levels of ecdysteroids and premature molting, but the underlying molecular and physiological changes associated with ESD remain poorly understood. Previously, we identified several genes, including arginine kinase and hemocyanin, that were expressed differentially in lobsters exhibiting signs of ESD (diseased) versus those lobsters exhibiting no signs of ESD (assumed healthy), and quantified their expression. In this study, we extend these findings and measure expression of a suite of 12 genes in tissues from 36 female lobsters of varying disease condition. In addition, molt stage is evaluated as a possible confounding factor in the expression of the selected genes. The expression of several genes changed significantly with disease stage. Arginine kinase expression decreased significantly in thoracic muscle of lobsters with signs of ESD. Ecdysteroid receptor expression was elevated significantly in both muscle and hepatopancreas of lobsters with signs of ESD. CYP45, a cytochrome P450 form that was shown previously to covary with ecdysteroid levels and to be inducible by some xenobiotics, showed significantly increased expression in hepatopancreas of lobsters with signs of ESD. Together, these results demonstrate that the expression of several genes is altered in lobsters showing signs of ESD, even when accounting for variation in molt stage. Given the observed changes in ecdysteroid receptor, arginine kinase, and CYP45 expression, further investigations of the association, if any, between molting, muscular function and xenobiotic metabolism and ESD are warranted.
    Description: This work was supported by the National Marine Fisheries Service as the New England Lobster Research Initiative: Lobster Shell Disease under NOAA grant NA06NMF4720100 to the University of Rhode Island Fisheries Center.
    Keywords: Arginine kinase ; 100 lobsters ; Cytochrome P450 ; Ecdysteroid ; Endocrine ; Hepatopancreas ; Heat shock protein ; Epizootic shell disease ; American lobster ; Shade
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 2 (2015): 48-61, doi:10.5670/oceanog.2015.31.
    Description: Oceanic and coastal waters are acidifying due to processes dominated in the open ocean by increasing atmospheric CO2 and dominated in estuaries and some coastal waters by nutrient-fueled respiration. The patterns and severity of acidification, as well as its effects, are modified by the host of stressors related to human activities that also influence these habitats. Temperature, deoxygenation, and changes in food webs are particularly important co-stressors because they are pervasive, and both their causes and effects are often mechanistically linked to acidification. Development of a theoretical underpinning to multiple stressor research that considers physiological, ecological, and evolutionary perspectives is needed because testing all combinations of stressors and stressor intensities experimentally is impossible. Nevertheless, use of a wide variety of research approaches is a logical and promising strategy for improving understanding of acidification and its effects. Future research that focuses on spatial and temporal patterns of stressor interactions and on identifying mechanisms by which multiple stressors affect individuals, populations, and ecosystems is critical. It is also necessary to incorporate consideration of multiple stressors into management, mitigation, and adaptation to acidification and to increase public and policy recognition of the importance of addressing acidification in the context of the suite of other stressors with which it potentially interacts.
    Description: Funding for research on acidification and multiple stressors was provided by NOAACSCOR NA10NOS4780138 to DLB, NASA NNX14AL8 to JS, NSF OCE-1219948 to JMB, NSF OCE-927445 and OCE-1041062 to LAL, NSF EF-1041070 to W-JC, a Linnaeus grant from the Swedish Research Councils VR and Formas to SD, NSF EF-0424599 to SCD, NSF OCE-1041038 to UP, NSF EF-1316113 to BAS, NSF ANT-1142122 to AET, NSF OCE-1316040 to AMT, and the NOAA Ocean Acidification Program Office to BP, LMM, and WCL.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Journal of Steroid Biochemistry and Molecular Biology 184 (2018): 3-10, doi:10.1016/j.jsbmb.2018.02.010.
    Description: Nuclear receptors are a superfamily of transcription factors restricted to animals. These transcription factors regulate a wide variety of genes with diverse roles in cellular homeostasis, development, and physiology. The origin and specificity of ligand binding within lineages of nuclear receptors (e.g., subfamilies) continues to be a focus of investigation geared toward understanding how the functions of these proteins were shaped over evolutionary history. Among early-diverging animal lineages, the retinoid X receptor (RXR) is first detected in the placozoan, Trichoplax adhaerens. To gain insight into RXR evolution, we characterized ligand- and DNA-binding activity of the RXR from T. adhaerens (TaRXR). Like bilaterian RXRs, TaRXR specifically bound 9-cis-retinoic acid, which is consistent with a recently published result and supports a conclusion that the ancestral RXR bound ligand. DNA binding site specificity of TaRXR was determined through protein binding microarrays (PBMs) and compared with human RXR. The binding sites for these two RXR proteins were broadly conserved (~85% shared high-affinity sequences within a targeted array), suggesting evolutionary constraint for the regulation of downstream genes. We searched for predicted binding motifs of the T. adhaerens genome within 1000 bases of annotated genes to identify potential regulatory targets. We identified 648 unique protein coding regions with predicted TaRXR binding sites that had diverse predicted functions, with enriched processes related to intracellular signal transduction and protein transport. Together, our data support hypotheses that the original RXR protein in animals bound a ligand with structural similarity to 9-cis-retinoic acid; the DNA motif recognized by RXR has changed little in more than 1 billion years of evolution; and the suite of processes regulated by this transcription factor diversified early in animal evolution.
    Description: Support for AMT was provided by the Tropical Research Initiative and an Internal Research and Development Award from the Woods Hole Oceanographic Institution. AMR was supported by NIH award R15GM114740. JM was supported by NSF award 1536530 to AMR. DM-P, BF and FMS were supported by NIH award R01DK094707 to FMS.
    Keywords: DNA binding motif ; Nuclear receptor ; Protein binding microarray
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2018. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Journal of Steroid Biochemistry and Molecular Biology 184 (2018): 11-19, doi:10.1016/j.jsbmb.2018.06.014.
    Description: Steroid hormone receptors are important regulators of development and physiology in bilaterian animals, but the role of steroid signaling in cnidarians has been contentious. Cnidarians produce steroids, including A-ring aromatic steroids with a side-chain, but these are probably made through pathways different than the one used by vertebrates to make their A-ring aromatic steroids. Here we present comparative genomic analyses indicating the presence of a previously undescribed nuclear receptor family within medusozoan cnidarians, that we propose to call NR3E. This family predates the diversification of ERR/ER/SR in bilaterians, indicating that the first NR3 evolved in the common ancestor of the placozoan and cnidarian-bilaterian with lineage-specific loss in the anthozoans, even though multiple species in this lineage have been shown to produce aromatic steroids, whose function remain unclear. We discovered serendipitously that a cytoplasmic factor within epidermal cells of transgenic Hydra vulgaris can trigger the nuclear translocation of heterologously expressed human ERα. This led us to hypothesize that aromatic steroids may also be present in the medusozoan cnidarian lineage, which includes Hydra, and may explain the translocation of human ERα. Docking experiments with paraestrol A, a cnidarian A-ring aromatic steroid, into the ligand-binding pocket of Hydra NR3E indicates that, if an aromatic steroid is indeed the true ligand, which remains to be demonstrated, it would bind to the pocket through a partially distinct mechanism from the manner in which estradiol binds to vertebrate ER.
    Description: KK is supported by grant from Japan Society for the Promotion of Science (JSPS 17K07420). I.M.L.B and Y.C. acknowledge the support and the use of resources of the French Infrastructure for Integrated Structural Biology FRISBI ANR-10-INBS-05 and of Instruct-ERIC. AMR was supported by NIH Award R15GM114740. AMT was supported by an Internal Research and Development Award from the Woods Hole Oceanographic Institution.
    Keywords: A-ring aromatic steroid ; Aromatization ; Steroid receptor ; Cnidarian
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © University of Chicago, 2019. This article is posted here by permission of University of Chicago for personal use, not for redistribution. The definitive version was published in Biological Bulletin 237(2), (2019): 73-75, doi: 10.1086/706563.
    Description: Dormancy is a widespread strategy used by diverse animal groups to persist through adverse environmental conditions, spread reproductive risk, and optimize seasonal phenology. Dormancy is an overarching term that refers to a reduction in metabolism, growth, and development; and different types of dormancy have been defined. Quiescence is directly initiated and terminated in response to environmental conditions, while diapause requires a preparatory phase that usually anticipates the onset of unfavorable conditions and also requires some minimum dormancy period (refractory phase) prior to termination. Dormancy is a fundamental feature of seasonal food web dynamics. Zooplankton populations can rapidly boom as individuals emerge from dormancy to feed on ephemeral algal blooms. Such productivity is critical to sustaining higher predators and supporting fisheries, particularly the growth of larval fish. Dormancy traits undergo selective pressure as zooplankton optimize developmental timing to maximize food availability and minimize predation pressure. As oceans warm and environments change, the relationship between dormancy cues, such as temperature and photoperiod, can shift, with as yet unknown effects on the timing of dormancy and resulting ecosystem dynamics. Future ecosystem dynamics are difficult to predict in part because we do not fully understand the cues that regulate the initiation or termination of dormancy, or how dormancy traits may change over time through acclimation and adaptation.
    Description: 2020-10-14
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...