GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Shamberger, K E F; Cohen, Anne L; Golbuu, Yimnang; McCorkle, Daniel C; Lentz, S J; Barkley, Hannah C (2014): Diverse coral communities in naturally acidified waters of a Western Pacific reef. Geophysical Research Letters, 41(2), 499-504, https://doi.org/10.1002/2013GL058489
    Publication Date: 2024-03-15
    Description: Anthropogenic carbon dioxide emissions are acidifying the oceans, reducing the concentration of carbonate ions ([CO32-) that calcifying organisms need to build and cement coral reefs. To date, studies of a handful of naturally acidified reef systems reveal depauperate communities, sometimes with reduced coral cover and calcification rates, consistent with results of laboratory-based studies. Here we report the existence of highly diverse, coral-dominated reef communities under chronically low pH and aragonite saturation state (Omega ar). Biological and hydrographic processes change the chemistry of the seawater moving across the barrier reefs and into Palau's Rock Island bays, where levels of acidification approach those projected for the western tropical Pacific open ocean by 2100. Nevertheless, coral diversity, cover, and calcification rates are maintained across this natural acidification gradient. Identifying the combination of biological and environmental factors that enable these communities to persist could provide important insights into the future of coral reefs under anthropogenic acidification.
    Keywords: Alkalinity, total; Aragonite saturation state; Aragonite saturation state, standard error; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Coulometric titration; Coverage; Coverage, standard error; Diversity; Diversity, standard error; Entire community; EXP; Experiment; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Palauan_reef; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Potentiometric titration; Rocky-shore community; Salinity; Site; Species richness; Species richness, standard error; Temperature, water; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 132 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Barkley, Hannah C; Cohen, Anne L; Golbuu, Yimnang; Starczak, V R; DeCarlo, Thomas M; Shamberger, K E F (2015): Changes in coral reef communities across a natural gradient in seawater pH. Science Advances, 1(5), e1500328-e1500328, https://doi.org/10.1126/sciadv.1500328
    Publication Date: 2024-03-15
    Description: Ocean acidification threatens the survival of coral reef ecosystems worldwide. The negative effects of ocean acidification observed in many laboratory experiments have been seen in studies of naturally low-pH reefs, with little evidence to date for adaptation. Recently, we reported initial data suggesting that low-pH coral communities of the Palau Rock Islands appear healthy despite the extreme conditions in which they live. Here, we build on that observation with a comprehensive statistical analysis of benthic communities across Palau's natural acidification gradient. Our analysis revealed a shift in coral community composition but no impact of acidification on coral richness, coralline algae abundance, macroalgae cover, coral calcification, or skeletal density. However, coral bioerosion increased 11-fold as pH decreased from the barrier reefs to the Rock Island bays. Indeed, a comparison of the naturally low-pH coral reef systems studied so far revealed increased bioerosion to be the only consistent feature among them, as responses varied across other indices of ecosystem health. Our results imply that whereas community responses may vary, escalation of coral reef bioerosion and acceleration of a shift from net accreting to net eroding reef structures will likely be a global signature of ocean acidification.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Ammonium; Ammonium, standard error; Aragonite saturation state; Aragonite saturation state, standard error; Benthos; Bicarbonate ion; Biomass/Abundance/Elemental composition; Calcification/Dissolution; Calcification rate, standard error; Calcification rate of calcium carbonate; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard error; Carbonate ion; Carbonate ion, standard error; Carbonate system computation flag; Carbon dioxide; Coast and continental shelf; Community composition and diversity; Corals, cover; Corals, cover, standard error; Coulometric titration; Coverage; Coverage, standard error; Density; Density, standard error; Diversity; Diversity, standard error; Entire community; Evenness of species; Evenness of species, standard error; EXP; Experiment; Extension rate; Extension rate, standard error; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); LATITUDE; LONGITUDE; Nitrate and Nitrite; Nitrate and Nitrite, standard error; OA-ICC; Ocean Acidification International Coordination Centre; Palau; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Percentage; Percentage, standard error; pH; pH, standard error; Phosphate; Phosphate, standard error; Potentiometric titration; Rocky-shore community; Salinity; Salinity, standard error; Site; South Pacific; Species richness; Species richness, standard error; Temperature, water; Temperature, water, standard error; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 728 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-03-15
    Description: In Palau, calcification rates of two reef-building coral genera (Porites and Favia) are maintained across a strong natural gradient in aragonite saturation state (Omega ar) ranging from 3.7 to 2.3. This observation contrasts the strong sensitivity to decreasing ?ar that these genera demonstrate in both laboratory CO2 manipulation experiments and in field studies. Moreover, in contrast to other naturally more acidic coral reefs, benthic communities in Palau's low-Omega ar (Omega ar = 2.3) Rock Island reefs display ecological indices consistent with healthy communities. A laboratory CO2 manipulation experiment and a field-based reciprocal transplant were used to investigate whether the apparent lack of sensitivity to ocean acidification of Palau's Porites corals can be attributed to local adaptation to chronic acidification or to environmental factors that allow corals to thrive despite extreme pH conditions. In a two-month laboratory incubation, calcification rates of Palau Porites from both environments were insensitive to changes in Omega ar over the range 1.5 to 3.0, suggestive of an adaptive, rather than environmental, mechanism for acidification tolerance. However, in the reciprocal transplant, corals transplanted between reefs at different ambient ?ar levels showed significant declines in calcification rates and high mortality, while corals returned back to their reef of origin were alive after 17 months in the field. Interpreted within the framework of the experimental result, the failure of pH/Omega ar-tolerant corals to successfully transplant between different reef sites hints at local adaptation to other (non-pH) environmental factors such as light, temperature, and/or flow that co-vary with Omega ar across Palau's natural acidification gradient.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Aragonite saturation state, standard deviation; Benthic animals; Benthos; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcification rate, standard error; Calcification rate of calcium carbonate; Calcification rate of calcium carbonate per month; Calcification rate of calcium carbonate per week; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Cnidaria; Coast and continental shelf; Duration; Event label; EXP; Experiment; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Incubation duration; Laboratory experiment; OA-ICC; Ocean Acidification International Coordination Centre; Palau_high_Omega; Palau_low_Omega; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; pH, standard deviation; Porites sp.; Potentiometric titration; Registration number of species; Salinity; Salinity, standard deviation; Single species; South Pacific; Species; Spectrophotometric; Status; Temperature, water; Temperature, water, standard deviation; Treatment; Tropical; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 6699 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2016
    Description: The 21𝑠𝑡 century warming and acidification of tropical oceans will impact the structure and function of coral reef ecosystems. Consequently, conservation efforts are increasingly focused on identifying and protecting reef communities that demonstrate resilience to these changes. In this thesis, I develop a scientific framework for identifying climate change resilience in coral communities and, using Palau’s coral reefs as a case study, demonstrate the application of this approach. First, I use coral skeletal records to evaluate the sensitivity of coral communities to episodes of severe thermal stress. This information reveals coral reef communities that consistently exhibit weak responses to multiple high temperature events. Second, I evaluate coral reef community structure across a strong, natural pH gradient using metrics informed by laboratory ocean acidification studies. The coral communities of Palau’s Rock Island reefs show a level of pH tolerance that is unique amongst reefs studied to date. Third, I conduct laboratory and field experiments to constrain the pH thresholds of these resilient corals and investigate potential mechanisms for pH tolerance. Finally, I combine archipelago-wide coral temperature and pH sensitivity data to construct climate change resilience indices. My study succeeds in identifying a small number of coral communities that have the potential to withstand 21𝑠𝑡 century climate change and highlights the spatial variability in community responses to ocean warming and acidification. Critically, I present a set of scientific tools and approaches for identifying resilient coral reef communities that has applicability to coral reefs worldwide.
    Description: Funding for this research was provided by the Next Wave Fund Fellowship, a National Science Foundation Graduate Student Fellowship, the NSF-funded National Network for Ocean and Climate Change Interpretation, the James Stratton Fellowship, National Science Foundation awards OCE-1220529 and OCE-1031971 to Anne Cohen, The Tiffany & Co. Foundation, The Nature Conservancy, The Dalio Foundation, Inc., through the Dalio Explore Fund, and Ray Dalio through the WHOI Access to the Sea Fund.
    Keywords: Coral reef conservation ; Global warming
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Biotropica 48 (2016): 483-490, doi:10.1111/btp.12320.
    Description: A growing body of literature has demonstrated significant biodiversity losses for many taxa when forest is converted to oil palm. However, no studies have directly investigated changes to biodiversity throughout the oil palm life cycle, in which oil palm matures for 25-30 years before replanting. This process leads to major changes in the oil palm landscape that likely influence species assemblages and ecosystem function. We compare frog assemblages between mature (21-27 year old) and recently replanted (1-2 year old) oil palm in Sumatra, Indonesia. Across eighteen 2.25-ha oil palm plots, we found 719 frogs from 14 species. Frog richness was 31 percent lower in replanted oil palm (9 species) than mature oil palm (13 species). Total frog abundance was 47 percent lower in replanted oil palm, and frog assemblage composition differed significantly between the two ages of oil palm. The majority of frog species were disturbance- tolerant, although we encountered four forest-associated frog species within mature oil palm despite a distance of 28 km between our study sites and the nearest extensive tract of forest. Although it is clear that protection of forest is of paramount importance for the conservation of tropical fauna, our results indicate that management decisions within tropical agricultural landscapes also have a profound impact on biodiversity. Practices such as staggered replanting or variable retention of mature oil palm patches could help maintain frog diversity in the oil palm landscape.
    Description: The Isaac Newton Trust and Sinar Mas Agro Resources and Technology funded both the fieldwork and the BEFTA Project.
    Keywords: Amphibian ; Biodiversity loss ; Management ; SE Asia ; Tropical agriculture
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2014]. This is the author's version of the work. It is posted here by permission of Geological Society of America for personal use, not for redistribution. The definitive version was published in Geology 43 (2015): 7-10, doi: 10.1130/G36147.1.
    Description: Coral reefs exist in a delicate balance between calcium carbonate (CaCO3) production and CaCO3 loss. Ocean acidification (OA), the CO2-driven decline in seawater pH and CaCO3 saturation state (Ω), threatens to tip this balance by decreasing calcification, and increasing erosion and dissolution. While multiple CO2 manipulation experiments show coral calcification declines under OA, the sensitivity of bioerosion to OA is less well understood. Previous work suggests that coral and coral reef bioerosion increase with decreasing seawater Ω. However, in the surface ocean, Ω and nutrient concentrations often covary, making their relative influence difficult to resolve. Here, we exploit unique natural gradients in Ω and nutrients across the Pacific basin to quantify the impact of these factors, together and independently, on macrobioerosion rates of coral skeletons. Using an automated program to quantify macrobioerosion in 3-D computerized tomography (CT) scans of coral cores, we show that macrobioerosion rates of live Porites colonies in both low-nutrient (oligotrophic) and high-nutrient (〉1 µM nitrate) waters increase significantly as Ω decreases. However, the sensitivity of macrobioerosion to Ω is ten times greater under high-nutrient conditions. Our results demonstrate that OA (decreased Ω) alone can increase coral macrobioerosion rates, but the interaction of OA with local stressors exacerbates its impact, accelerating a shift toward net CaCO3 removal from coral reefs.
    Description: This work was supported by NSF OCE 1041106 to A.L.C. and K.E.S., NSF OCE 1220529 to A.L.C., TNC award PNA/WHOI061810 to A.L.C., NSF Graduate Research Fellowships to T.M.D. and H.C.B., and a WHOI-OLI post-doctoral fellowship to K.E.S.
    Description: 2015-11-14
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Communications Biology 1 (2018): 177, doi:10.1038/s42003-018-0183-7.
    Description: The oceans are warming and coral reefs are bleaching with increased frequency and severity, fueling concerns for their survival through this century. Yet in the central equatorial Pacific, some of the world’s most productive reefs regularly experience extreme heat associated with El Niño. Here we use skeletal signatures preserved in long-lived corals on Jarvis Island to evaluate the coral community response to multiple successive heatwaves since 1960. By tracking skeletal stress band formation through the 2015-16 El Nino, which killed 95% of Jarvis corals, we validate their utility as proxies of bleaching severity and show that 2015-16 was not the first catastrophic bleaching event on Jarvis. Since 1960, eight severe (〉30% bleaching) and two moderate (〈30% bleaching) events occurred, each coinciding with El Niño. While the frequency and severity of bleaching on Jarvis did not increase over this time period, 2015–16 was unprecedented in magnitude. The trajectory of recovery of this historically resilient ecosystem will provide critical insights into the potential for coral reef resilience in a warming world.
    Description: Funding for this study was provided by National Science Foundation awards OCE 1537338, OCE 1605365, and OCE 1031971 to A.L.C., and the Robertson Foundation to A.L.C., National Science Foundation Graduate Research Fellowships to T.M.D. and A.E.A., and a National Defense Science and Engineering Graduate Fellowship to H.E.R.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016147, doi:10.1029/2020JC016147.
    Description: Net ecosystem calcification (NEC) rates of Palau's largest lagoon and barrier reef system between 1992 and 2015 are estimated from sparse total alkalinity (TA) and salinity measurements and a tidal exchange model in which surface lagoon water transported offshore on the ebb tide is replaced by saltier (denser) ocean water that sinks to the bottom after entering the lagoon on the flood tide. Observed lagoon salinities are accurately reproduced by the model with no adjustable parameters. To accurately reproduce observed lagoon TA, NEC for the lagoon‐barrier reef system was 70 mmols m−2 day−1 from 1992 to 1998, 35 mmols m−2 day−1 from 1999 to 2012, and 25 mmols m−2 day−1 from 2013 to 2015. This indicates that Palau's largest lagoon and barrier reef system has not recovered, as of 2015, from the 50% decline in NEC in 1998 caused by the loss of coral cover following a severe bleaching event. The cause of the further decline in NEC in 2012–2013 is unclear. Lagoon residence times vary from 8 days during spring tides to 14 days during neap tides and drive substantial spring‐neap variations in lagoon TA (~25% of the mean salinity‐normalized ocean‐lagoon TA difference). Sparse measurements that do not resolve these spring‐neap variations can exhibit apparent long‐term variations in alkalinity that are not due to changes in NEC.
    Description: This work was partially supported by NSF award 1220529 to A.L.C., S.J.L., and K.E.F.S and NSF award 1737311 to A.L.C. and the Oceanography Department, Texas A&M University K.E.F.S.
    Description: 2021-01-06
    Keywords: Coral reef ; Calcification ; Bleaching ; Residence time ; Net ecosystem calcification ; Palau
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 499-504, doi:10.1002/2013GL058489.
    Description: Anthropogenic carbon dioxide emissions are acidifying the oceans, reducing the concentration of carbonate ions ([CO32−]) that calcifying organisms need to build and cement coral reefs. To date, studies of a handful of naturally acidified reef systems reveal depauperate communities, sometimes with reduced coral cover and calcification rates, consistent with results of laboratory-based studies. Here we report the existence of highly diverse, coral-dominated reef communities under chronically low pH and aragonite saturation state (Ωar). Biological and hydrographic processes change the chemistry of the seawater moving across the barrier reefs and into Palau's Rock Island bays, where levels of acidification approach those projected for the western tropical Pacific open ocean by 2100. Nevertheless, coral diversity, cover, and calcification rates are maintained across this natural acidification gradient. Identifying the combination of biological and environmental factors that enable these communities to persist could provide important insights into the future of coral reefs under anthropogenic acidification.
    Description: Funded by a WHOI-OLI Postdoctoral Scholarship to KEFS, NSF OCE-1041106 to A.L.C. and D.C.M. and TNC award PNA/WHOI061810 to A.L.C.
    Description: 2014-07-16
    Keywords: Coral reefs ; Ocean acidification ; Carbonate chemistry ; Diversity ; Palau ; Calcification
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: application/postscript
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...