GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (379 pages)
    Edition: 1st ed.
    ISBN: 9783527845705
    Language: English
    Note: Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Overview of Flexible Electronic Encapsulating Technology -- 1.1 Flexible Electronics Overview -- 1.2 Development of Flexible Electronic Encapsulating Technology -- 1.2.1 Flip Chip Process -- 1.2.2 Progress of CIF‐Based Flexible Electronic Encapsulating Technology -- 1.3 Encapsulating Technology of Several Important Flexible Electronic Devices -- 1.3.1 Organic Light‐Emitting Diode -- 1.3.2 Flexible Solar Cell Encapsulating -- 1.3.3 Flexible Amorphous Silicon Solar Cells -- 1.3.4 Flexible Perovskite Solar Cells -- 1.4 Flexible Electronic Encapsulating Materials -- 1.4.1 Selection Principle of Flexible Electronic Encapsulating Materials -- 1.4.2 Desirable Properties of Flexible Electronic Encapsulating Materials -- 1.5 Overview of the Development of Flexible Electronic Packaging at Home and Abroad -- References -- Chapter 2 Basic Concepts Related to Flexible Electronic Packaging -- 2.1 Composition of Flexible Electronic Packaging -- 2.1.1 Flexible Substrate -- 2.1.2 Electronic Components -- 2.1.3 Crosslinked Conductive Materials -- 2.1.4 Adhesive Layer -- 2.1.5 Coating Layer -- 2.2 Flexible Electronic Packaging Structure -- 2.2.1 Curved Structures of Hard Thin Films -- 2.2.2 Island‐Bridge Structure -- 2.2.3 Pre‐strained Super‐Soft Interconnect Structure -- 2.2.4 Open Grid Structure -- 2.3 Encapsulation Principle -- 2.3.1 Basic Principle of Penetration -- 2.3.2 Permeation Mechanism of Water Vapor and Gas -- 2.3.3 Barrier Performance Measurement -- 2.3.4 Thin‐Film Barrier Technology for Organic Devices -- 2.3.4.1 Single‐Layer Film Package -- 2.3.4.2 Multilayer Film Packaging -- 2.3.5 Film Encapsulation Mechanics -- 2.4 Packaging Technology -- 2.4.1 Local Multilayer Packaging -- 2.4.2 Multilayer Barrier Film Packaging -- 2.4.3 Online Thin‐Film Encapsulation. , 2.4.4 Atomic Layer Deposition (ALD) Encapsulation -- 2.4.5 Inkjet Packaging -- 2.4.6 Flexible Glass Packaging -- 2.5 Packaging Stability -- 2.6 Encapsulated Products -- 2.7 Chapter Summary -- References -- Chapter 3 Flexible Substrates -- 3.1 Concept and Connotation of Flexible Substrates -- 3.2 Development History of Flexible Substrates -- 3.3 Flexible Substrate Materials -- 3.3.1 Polydimethylsiloxane -- 3.3.2 Polyvinyl Alcohol -- 3.3.3 Polycarbonate -- 3.3.4 Polyester -- 3.3.5 Polyimide -- 3.3.6 Polyurethane -- 3.3.7 Parylene -- 3.3.8 Liquid Crystal Polymer -- 3.3.9 Hydrogel -- 3.4 Molding Technology of Flexible Substrate -- 3.4.1 Coating Technology -- 3.4.1.1 Dip Coating Method -- 3.4.1.2 Air Knife Coating Method -- 3.4.1.3 Scraper Coating Method -- 3.4.1.4 Rotary Coating Method -- 3.4.2 Melt Extrusion Molding -- 3.4.3 Melt Extrusion Blow Molding -- 3.4.4 Solution Tape Casting -- 3.4.5 Bidirectional Drawing Molding -- 3.4.6 Chemical Vapor Deposition -- 3.5 Performance Evaluation of Flexible Substrates -- 3.5.1 Mechanical Flexibility -- 3.5.2 Ductility -- 3.5.3 Adhesive Property -- 3.5.4 Barrier Property -- 3.5.5 Electrical Property -- 3.5.6 Chemical Stability -- 3.5.7 Dimensional Stability -- 3.5.8 Surface Smoothness and Thickness Uniformity -- 3.5.9 Optical Clarity (Transmittance) -- 3.5.10 Biocompatibility -- 3.5.11 Bioabsorbability -- 3.6 Application of Flexible Substrates -- 3.6.1 Flexible Display Substrates -- 3.6.2 Flexible Electrode Substrates -- 3.6.3 Flexible Sensing Substrates -- 3.7 Development Trend of Flexible Substrates -- 3.7.1 Intelligent and Functional Flexible Substrates -- 3.7.2 Green Degradable Flexible Substrates -- 3.7.3 Optimization of Interface Compatibility of Flexible Substrates -- References -- Chapter 4 Test Methods -- 4.1 Sealing Test -- 4.1.1 Direct Diffusion Method -- 4.1.1.1 Weight Cup Test. , 4.1.1.2 Differential Pressure Method -- 4.1.1.3 Balancing Method -- 4.1.1.4 Tunable Diode Laser Absorption Spectrometry -- 4.1.1.5 Isotope Labeling Mass Spectrometry -- 4.1.2 Indirect Optical Method -- 4.1.3 Indirect Electrical Method -- 4.1.3.1 Calcium Electrical Test -- 4.1.3.2 Dielectric Measurement Method -- 4.1.4 Indirect Electrochemical Method -- 4.1.4.1 Electrochemical Impedance Spectroscopy (EIS) -- 4.1.4.2 Leakage Current Monitoring Method (LCM) -- 4.1.4.3 Linear Scanning Voltammetry (LSV) -- 4.1.5 Indirect Electromechanical Method -- 4.2 Bending Test -- 4.2.1 Static Bending and Dynamic Bending -- 4.2.2 Three‐Point Bending and Four‐Point Bending -- 4.2.3 Push Bending and Roll Bending -- 4.2.3.1 Push Bending -- 4.2.3.2 Rolling Bend -- 4.3 Mechanical Performance Testing -- 4.4 Stability Testing -- References -- Chapter 5 Flexible Electronic Encapsulation -- 5.1 Inorganic Encapsulating Material -- 5.1.1 Metal Encapsulating Material -- 5.1.1.1 Copper, Aluminum -- 5.1.1.2 Favorable Alloys -- 5.1.1.3 Copper-Tungsten Alloy (Cu-W) -- 5.1.2 Ceramic Encapsulating Material -- 5.1.2.1 Al2O3 Ceramic Encapsulation Material -- 5.1.2.2 AlN Ceramic Encapsulation Materials -- 5.1.2.3 BeO Ceramic Encapsulation Material -- 5.1.2.4 BN Ceramic Encapsulation Materials -- 5.1.3 New Trend in Inorganic Encapsulating Materials Combined with Flexible Electronic Technology -- 5.2 Organic Encapsulating Material -- 5.2.1 Polymer Encapsulating Material -- 5.2.1.1 Epoxy Resins -- 5.2.1.2 Polyimide Resins -- 5.2.1.3 Organic Silicon -- 5.2.1.4 Bismaleimide -- 5.2.1.5 Bismaleimide Triazine Resin -- 5.2.2 Development Trend of Organic Encapsulating Materials in Flexible Electronic Devices -- 5.3 Organic-Inorganic Hybrid Encapsulating Material -- 5.3.1 Application of Organic-Inorganic Hybrid Materials in Flexible Electronics -- 5.3.1.1 Strain and Pressure Sensors. , 5.3.1.2 Temperature Sensor -- 5.3.1.3 Humidity Sensor -- 5.3.1.4 Optical Sensors -- 5.3.1.5 Other Types of Sensing Devices -- 5.3.2 Development Trends of Organic-Inorganic Hybrid Materials -- References -- Chapter 6 Development of Flexible Electronics Packaging Technology -- 6.1 Flexible Electronics Packaging -- 6.1.1 Single‐Layer Thin‐Film Packaging -- 6.1.2 Multi‐Layer Thin‐Film Packaging -- 6.1.2.1 Barix Multilayer Thin‐Film Packaging -- 6.1.2.2 Other Multilayer Thin‐Film Packaging -- 6.2 Thin‐Film Packaging Technology -- 6.2.1 PECVD Atomic Layer Deposition Packaging Technology -- 6.2.1.1 Introduction to PECVD Technology -- 6.2.1.2 Development of PECVD Technology -- 6.2.2 ALD Atomic Layer Deposition Packaging Technology -- 6.2.2.1 Introduction to ALD Technology -- 6.2.2.2 Development of ALD Technology -- 6.2.3 Inkjet Packaging Technology -- 6.2.3.1 Introduction to Inkjet Encapsulation Technology -- 6.2.3.2 Continuous Inkjet Printing -- 6.2.3.3 Drop‐on‐Demand Inkjet Printing -- 6.2.3.4 Development of Inkjet Printing Technology -- References -- Chapter 7 Application of Flexible Electronics Packaging -- 7.1 Industry Chain Analysis of Flexible Electronics Packaging -- 7.1.1 Upstream, Midstream, and Downstream of the Flexible Electronics Industry Chain -- 7.1.2 Overview of the Development of Flexible Packaging Materials -- 7.2 Packaging Applications of Flexible OLED Devices -- 7.2.1 Stability Issues of Flexible OLED Devices -- 7.2.2 Flexible OLED Packaging Technology -- 7.2.2.1 Lack of Breakthrough in Encapsulating Technology -- 7.2.2.2 Low Yield Rate -- 7.3 Packaging Applications for Flexible Solar Cells -- 7.3.1 Inorganic Flexible Solar Cells -- 7.3.2 Organic Flexible Solar Cells -- 7.3.3 Dye‐Sensitized Solar Cells -- 7.3.3.1 Structure of Dye‐Sensitized Solar Cells -- 7.3.3.2 Light Anode -- 7.3.3.3 Counter Electrode. , 7.4 Packaging Applications for Flexible Electronic Devices -- 7.4.1 Basic Structure of Flexible Electronic Devices -- 7.4.2 Application of Flexible Electronic Devices -- 7.4.2.1 Optoelectronics -- 7.4.2.2 Robot -- 7.4.2.3 Biomedical -- 7.4.2.4 Energy Equipment -- 7.5 Packaging Applications for Flexible Electronics Sensors -- 7.5.1 Common Materials of Flexible Sensors -- 7.5.1.1 Flexible Substrate -- 7.5.1.2 Metal Materials -- 7.5.1.3 Inorganic Semiconductor Materials -- 7.5.1.4 Organic Materials -- 7.5.1.5 Carbon Materials -- 7.5.2 Flexible Gas Sensors -- 7.5.3 Flexible Pressure Sensors -- 7.5.4 Flexible Humidity Sensor -- 7.5.5 Normal Sensors Compare with Flexible Sensors -- References -- Chapter 8 Testing Standards -- 8.1 Terminology and Alphabetic Symbols -- 8.1.1 Scope -- 8.1.2 Terms and Definitions -- 8.1.2.1 Terminology Classification -- 8.1.2.2 General Terms -- 8.1.2.3 Physical Characteristics Related Terms -- 8.1.2.4 Terms Related to Construction Elements -- 8.1.2.5 Symbols Related to Performances and Specifications -- 8.1.2.6 Terms Related to the Production Process -- 8.1.3 Alphabetic Symbols (Quantity Symbols/Unit Symbols) -- 8.1.3.1 Classification -- 8.1.3.2 Symbols -- 8.2 Mechanical Test Method (Deformation Test) -- 8.2.1 Cyclic Bending Test -- 8.2.1.1 Purpose -- 8.2.1.2 Testing Device -- 8.2.1.3 Test Procedure -- 8.2.1.4 Test Conditions and Reports -- 8.2.2 Static Bending Test -- 8.2.2.1 Purpose -- 8.2.2.2 Testing Device -- 8.2.2.3 Test Steps -- 8.2.2.4 Test Conditions and Reports -- 8.2.3 Combined Bending Test -- 8.2.3.1 Purpose -- 8.2.3.2 Testing Device -- 8.2.3.3 Test Procedure -- 8.2.3.4 Test Conditions and Reports -- 8.2.4 Rolling Test -- 8.2.4.1 Purpose -- 8.2.4.2 Testing Device -- 8.2.4.3 Test Procedure -- 8.2.4.4 Test Conditions and Reports -- 8.2.5 Static Rolling Test -- 8.2.5.1 Purpose -- 8.2.5.2 Testing Device. , 8.2.5.3 Test Procedure.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wang, Feifei; Hu, Bangqi; Zhao, Jingtao; Guo, Jianwei; Ding, Xue; Huang, Wei; Song, Weiyu (in review): Evolution of current circulation and bottom redox conditions in the central Okinawa Trough over the last 19 ka. Paleoceanography and Paleoclimatology
    Publication Date: 2023-01-13
    Description: The foraminifera and geochemical element records from the Core CS2 in the center of the Okinawa Trough (OT) revealed a history of current circulation and bottom redox conditions over the last 19 Ka. During the last glaciation, the few Kuroshio Current (KC) and tropical/subtropical species components, the shoaled depth of thermocline (DOT) and high infaunal foraminifera, together suggest the hypoxia in the isolated and semiclosed OT might be related to an absence/shift of the KC. Furthermore, the hypoxia variations in three episodes coincided with changes in the North Pacific Intermediate Water (NPIW), as stronger hypoxia and enhanced NPIW occurred in the Heinrich Stadia 1 and Younger Dryas periods, and rapidly decreasing hypoxia corresponded with weaker NPIW ventilation in the Bølling/Allerød period. Previously recorded hypoxia in the OT occurred broadly at a water depth of between ~1,300 and 1,800 m. Meanwhile, the lowest productivity precluded the possibility of hypoxia caused by organic matter consumption. We thereby infer the enhanced glacial NPIW might be another reason for the hypoxia. After the postglaciation, the OT transitioned into a fully oceanic environment and was reoccupied by main pathway of the KC. This reoccupation greatly alleviated the hypoxia via weakening stratification and increasing vertical mixing. Evolution research of current circulation and bottom redox conditions can help in understanding the changes in the storage/release of carbon as the paleoclimate changed. Moreover, the variations in bottom redox conditions in the OT offer a possible informative window for understanding the influence of glacial NPIW in the mid-latitude zone.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Zhao, Hong; Huang, Wei; Xie, Tingting; Wu, Xian; Xie, Yaowei; Feng, Song; Chen, Fahu (2019): Optimization and evaluation of a monthly air temperature and precipitation gridded dataset with a 0.025° spatial resolution in China during 1951-2011. Theoretical and Applied Climatology, 1-17, https://doi.org/10.1007/s00704-019-02830-y
    Publication Date: 2023-01-13
    Description: The monthly air temperature in 1153 stations and precipitation in 1202 stations in China and neighboring countries were collected to construct a monthly climate dataset in China on 0.025 ° resolution (approximately 2.5 km) named LZU0025 dataset designed by Lanzhou University (LZU), using a partial thin plate smoothing method embedded in the ANUSPLIN software. The accuracy of the LZU0025 was evaluated from analyzing three aspects: 1) Diagnostic statistics from surface fitting model in the period of 1951-2011, and results show low mean square root of generalized cross validation (RTGCV) for monthly air temperature surface (1.1 °C) and monthly precipitation surface (2 mm1/2) which interpolated the square root of itself. This indicate exact surface fitting models. 2) Error statistics based on 265 withheld stations data in the period of 1951-2011, and results show that predicted values closely tracked true values with mean absolute error (MAE) of 0.6 °C and 4 mm and standard deviation of mean error (STD) of 1.3 °C and 5 mm, and monthly STDs presented consistent change with RTGCV varying. 3) Comparisons to other datasets through two ways, one was to compare three indices namely the standard deviation, mean and time trend derived from all datasets to referenced dataset released by the China Meteorological Administration (CMA) in the Taylor diagrams, the other was to compare LZU0025 to the Camp Tibet dataset on mountainous remote area. Taylor diagrams displayed the standard deviation derived from LZU had higher correlation with that induced from CMA (Pearson correlation R=0.76 for air temperature case and R=0.96 for precipitation case). The standard deviation for this index derived from LZU was more close to that induced from CMA, and the centered normalized root-mean-square difference for this index derived from LZU and CMA was lower. The same superior performance of LZU were found in comparing indices of the mean and time trend derived from LZU and those induced from other datasets. LZU0025 had high correlation with the Camp dataset for air temperature despite of insignificant correlation for precipitation in few stations. Based on above comprehensive analyses, LZU0025 was concluded as the reliable dataset.
    Keywords: China; File content; File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 54 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-30
    Description: The Fukushima accident released short-lived Cs-134 and longer-lived Cs-137 to the ocean. The amount, although substantial, is much less than that produced during the atomic bomb tests 60 yrs ago. Cs-134 and Cs-137 are anthropogenic radionuclides and soluble in seawater, hence, the radioactivity can be used as a tracer for special event or currents. Here we collected Cs-134 and Cs-137 samples in seawaters surrounding Taiwan including the Kuroshio, the northern South China Sea, the Taiwan Strait, and the southern East China Sea from 2018 to 2021. Most surface seawater samples were collected from boats using 20-L tanks, and a few samples were gathered from the shore. Non-surface seawater samples were taken from R/Vs Ocean Researcher I, II, and III with Niskin bottles mounted on a CTD rosette. All samples were determined in the Radian Monitor Center, Atomic Energy Council of Taiwan. Ammonium molybdophosphate (AMP) was used to pre-concentrated Radiocesium. Each 40-L (60-L) sample was counted for 200,000 s (120,000 s) using a high-purity germanium (HPGe) detector with lead shielding. The detection limits of 137Cs was 0.5 Bq m−3. The averaged surface Cs-137 activities was 1.18±0.25 Bq m-3, however, the activities of Cs-134 samples were all under detection limit. Complete data are archived, including sampling date, location, water depth, temperature, salinity, and Cs-137 activity; total sample amount is 577.
    Keywords: Caesium-137; Cs-137; DATE/TIME; DEPTH, water; East China Sea; Fukushima accident; High-purity Germanium (HPGe) detector; Kuroshio; LATITUDE; LONGITUDE; MULT; Multiple investigations; Salinity; South China Sea; Taiwan_Seawater; Taiwan Strait; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 1731 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Department of Marine Sciences, University of Georgia
    Publication Date: 2024-02-17
    Keywords: 32KZ20090719-track; Algorithm; Cape Hatteras; CT; DATE/TIME; Depth, bathymetric, interpolated/gridded; DEPTH, water; Distance; extracted from GLOBALVIEW-CO2; extracted from the 2-Minute Gridded Global Relief Data (ETOPO2); extracted from the NCEP/NCAR 40-Year Reanalysis Project; extracted from the World Ocean Atlas 2005; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); GM_200907; LATITUDE; LONGITUDE; Partial pressure of carbon dioxide (water) at equilibrator temperature (wet air); Pressure, atmospheric; Pressure, atmospheric, interpolated; Pressure at equilibration; Quality flag; Recomputed after SOCAT (Pfeil et al., 2013); Salinity; Salinity, interpolated; SOCAT; Surface Ocean CO2 Atlas Project; Temperature, water; Temperature at equilibration; Underway cruise track measurements; xCO2 (air), interpolated; xCO2 (water) at equilibrator temperature (dry air)
    Type: Dataset
    Format: text/tab-separated-values, 104520 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Department of Marine Sciences, University of Georgia
    Publication Date: 2024-02-17
    Keywords: 31B520060906; 31B520060906-track; Algorithm; Bold; CT; DATE/TIME; Depth, bathymetric, interpolated/gridded; DEPTH, water; Distance; extracted from GLOBALVIEW-CO2; extracted from the 2-Minute Gridded Global Relief Data (ETOPO2); extracted from the NCEP/NCAR 40-Year Reanalysis Project; extracted from the World Ocean Atlas 2005; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); LATITUDE; LONGITUDE; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pressure, atmospheric; Pressure, atmospheric, interpolated; Quality flag; Recomputed after SOCAT (Pfeil et al., 2013); Salinity; Salinity, interpolated; SOCAT; Surface Ocean CO2 Atlas Project; Temperature, water; Underway cruise track measurements; xCO2 (air), interpolated; xCO2 (water) at sea surface temperature (dry air)
    Type: Dataset
    Format: text/tab-separated-values, 102750 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-03-15
    Description: The atmospheric partial pressure of CO2 (pCO2) has been increasing dramatically since the beginning of the industrial revolution and about 30% of the CO2 produced by anthropogenic activities was absorbed by the ocean. This led to a perturbation of the seawater carbonate chemistry resulting in a decrease of the average surface ocean pH by 0.1 and termed ocean acidification (OA). Projections suggest that pCO2 may reach 900 μatm by the end of the twenty-first century lowering the average pH of the surface ocean by 0.4 units. The negative impacts of OA on many species of marine invertebrates such as mollusks, echinoderms, and crustaceans are well documented. However, less attention has been paid to the impacts of low pH on fitness and immune system in crustaceans. Here, we exposed Pacific white shrimps to 3 different pHs (nominal pH 8.0, 7.9, and 7.6) over a 100-days experiment. We found that, even though there were no significant effects on fitness parameters (survival, growth and allometries between length and weight), some immune markers were modified under low pH. A significant decrease in total hemocyte count and phenoloxidase activity was observed in shrimps exposed to pH 7.6 as compared to pH 8.0; and phagocytosis rate significantly decreased with decreasing pH. A significant increase in superoxide production was also observed at pH 7.6 as compared to pH 8.0. All these results suggest that a 100-days exposure to pH 7.6 did not have a direct effect on fitness but lead to a modulation of the immune response.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Arthropoda; Benthic animals; Benthos; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Containers and aquaria (20-1000 L or 〈 1 m**2); Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Growth rate; Hemocytes; Identification; Laboratory experiment; Laboratory strains; Length; Litopenaeus vannamei; Mass; Mortality/Survival; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Other studied parameter or process; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Phagocytic activity; Phagocytosis; Potentiometric; Salinity; Salinity, standard deviation; Single species; Species, unique identification; Species, unique identification (Semantic URI); Species, unique identification (URI); Superoxide production; Survival; Temperature, water; Temperature, water, standard deviation; Treatment: pH; Type of study
    Type: Dataset
    Format: text/tab-separated-values, 297 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-03-15
    Description: Previous studies have found that calcification in coral reefs is generally stronger during the day, whereas dissolution is prevalent at night. On the basis of these contrasting patterns, the diel variations of net community calcification (NCC) were monitored to examine the relative sensitivity of CaCO3 production (calcification) and dissolution in coral reefs to ocean acidification (OA), using two mesocosms that replicated a typical subtropical coral reef ecosystem in southern Taiwan. The results revealed that the daytime NCC remained unchanged, whereas the nighttime NCC decreased between the control (ambient) and treatment (OA) conditions, suggesting that carbonate dissolution could be more sensitive to OA than coral calcification. The average sensitivity of the integrated daily NCC to changes in the seawater saturation state (Omega a) was estimated to be a reduction of 54% in NCC per unit change in Omega a, which is consistent with the global average. In summary, our results support the prevailing anticipation that OA would lead to a reduction in the overall accretion of coral reef ecosystems. However, increased CaCO3 dissolution rather than decreased coral calcification could be the dominant driving force responsible for this OA-induced reduction in NCC.
    Keywords: Alkalinity, total; Aragonite saturation state; Benthos; Bicarbonate ion; Calcification/Dissolution; Calcification rate, standard deviation; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; CO2-analyzer, nondispersive infrared gas analyzer with water vapor freeze trap; Coast and continental shelf; Entire community; Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Mesocosm or benthocosm; Net calcification rate of calcium carbonate; Net community calcification, dark; Net community calcification, light; Net community production, oxygen; Net community production, standard deviation; North Pacific; OA-ICC; Ocean Acidification International Coordination Centre; Other; Oxygen, dissolved; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Potentiometric titration; Primary production/Photosynthesis; Respiration; Respiration rate, oxygen; Respiration rate, oxygen, standard deviation; Rocky-shore community; Salinity; Spectrophotometric; Temperature, water; Time point, descriptive; Treatment; Tropical; Type
    Type: Dataset
    Format: text/tab-separated-values, 12436 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Department of Marine Sciences, University of Georgia
    Publication Date: 2024-02-17
    Keywords: 31B520060606; 31B520060606-track; Algorithm; Bold; CT; DATE/TIME; Depth, bathymetric, interpolated/gridded; DEPTH, water; Distance; extracted from GLOBALVIEW-CO2; extracted from the 2-Minute Gridded Global Relief Data (ETOPO2); extracted from the NCEP/NCAR 40-Year Reanalysis Project; extracted from the World Ocean Atlas 2005; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); LATITUDE; LONGITUDE; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pressure, atmospheric; Pressure, atmospheric, interpolated; Quality flag; Recomputed after SOCAT (Pfeil et al., 2013); Salinity; Salinity, interpolated; SOCAT; Surface Ocean CO2 Atlas Project; Temperature, water; Underway cruise track measurements; xCO2 (air), interpolated; xCO2 (water) at sea surface temperature (dry air)
    Type: Dataset
    Format: text/tab-separated-values, 89457 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Department of Marine Sciences, University of Georgia
    Publication Date: 2024-02-17
    Keywords: 32KZ20090109-track; Algorithm; Cape Hatteras; CT; DATE/TIME; Depth, bathymetric, interpolated/gridded; DEPTH, water; Distance; extracted from GLOBALVIEW-CO2; extracted from the 2-Minute Gridded Global Relief Data (ETOPO2); extracted from the NCEP/NCAR 40-Year Reanalysis Project; extracted from the World Ocean Atlas 2005; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); GM_200901; LATITUDE; LONGITUDE; Partial pressure of carbon dioxide (water) at equilibrator temperature (wet air); Pressure, atmospheric; Pressure, atmospheric, interpolated; Pressure at equilibration; Quality flag; Recomputed after SOCAT (Pfeil et al., 2013); Salinity; Salinity, interpolated; SOCAT; Surface Ocean CO2 Atlas Project; Temperature, water; Temperature at equilibration; Underway cruise track measurements; xCO2 (air), interpolated; xCO2 (water) at equilibrator temperature (dry air)
    Type: Dataset
    Format: text/tab-separated-values, 77805 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...