GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Englisch  (1)
Publikationsart
Schlagwörter
Sprache
  • Englisch  (1)
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    Newark :John Wiley & Sons, Incorporated,
    Schlagwort(e): Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (379 pages)
    Ausgabe: 1st ed.
    ISBN: 9783527845705
    Sprache: Englisch
    Anmerkung: Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Overview of Flexible Electronic Encapsulating Technology -- 1.1 Flexible Electronics Overview -- 1.2 Development of Flexible Electronic Encapsulating Technology -- 1.2.1 Flip Chip Process -- 1.2.2 Progress of CIF‐Based Flexible Electronic Encapsulating Technology -- 1.3 Encapsulating Technology of Several Important Flexible Electronic Devices -- 1.3.1 Organic Light‐Emitting Diode -- 1.3.2 Flexible Solar Cell Encapsulating -- 1.3.3 Flexible Amorphous Silicon Solar Cells -- 1.3.4 Flexible Perovskite Solar Cells -- 1.4 Flexible Electronic Encapsulating Materials -- 1.4.1 Selection Principle of Flexible Electronic Encapsulating Materials -- 1.4.2 Desirable Properties of Flexible Electronic Encapsulating Materials -- 1.5 Overview of the Development of Flexible Electronic Packaging at Home and Abroad -- References -- Chapter 2 Basic Concepts Related to Flexible Electronic Packaging -- 2.1 Composition of Flexible Electronic Packaging -- 2.1.1 Flexible Substrate -- 2.1.2 Electronic Components -- 2.1.3 Crosslinked Conductive Materials -- 2.1.4 Adhesive Layer -- 2.1.5 Coating Layer -- 2.2 Flexible Electronic Packaging Structure -- 2.2.1 Curved Structures of Hard Thin Films -- 2.2.2 Island‐Bridge Structure -- 2.2.3 Pre‐strained Super‐Soft Interconnect Structure -- 2.2.4 Open Grid Structure -- 2.3 Encapsulation Principle -- 2.3.1 Basic Principle of Penetration -- 2.3.2 Permeation Mechanism of Water Vapor and Gas -- 2.3.3 Barrier Performance Measurement -- 2.3.4 Thin‐Film Barrier Technology for Organic Devices -- 2.3.4.1 Single‐Layer Film Package -- 2.3.4.2 Multilayer Film Packaging -- 2.3.5 Film Encapsulation Mechanics -- 2.4 Packaging Technology -- 2.4.1 Local Multilayer Packaging -- 2.4.2 Multilayer Barrier Film Packaging -- 2.4.3 Online Thin‐Film Encapsulation. , 2.4.4 Atomic Layer Deposition (ALD) Encapsulation -- 2.4.5 Inkjet Packaging -- 2.4.6 Flexible Glass Packaging -- 2.5 Packaging Stability -- 2.6 Encapsulated Products -- 2.7 Chapter Summary -- References -- Chapter 3 Flexible Substrates -- 3.1 Concept and Connotation of Flexible Substrates -- 3.2 Development History of Flexible Substrates -- 3.3 Flexible Substrate Materials -- 3.3.1 Polydimethylsiloxane -- 3.3.2 Polyvinyl Alcohol -- 3.3.3 Polycarbonate -- 3.3.4 Polyester -- 3.3.5 Polyimide -- 3.3.6 Polyurethane -- 3.3.7 Parylene -- 3.3.8 Liquid Crystal Polymer -- 3.3.9 Hydrogel -- 3.4 Molding Technology of Flexible Substrate -- 3.4.1 Coating Technology -- 3.4.1.1 Dip Coating Method -- 3.4.1.2 Air Knife Coating Method -- 3.4.1.3 Scraper Coating Method -- 3.4.1.4 Rotary Coating Method -- 3.4.2 Melt Extrusion Molding -- 3.4.3 Melt Extrusion Blow Molding -- 3.4.4 Solution Tape Casting -- 3.4.5 Bidirectional Drawing Molding -- 3.4.6 Chemical Vapor Deposition -- 3.5 Performance Evaluation of Flexible Substrates -- 3.5.1 Mechanical Flexibility -- 3.5.2 Ductility -- 3.5.3 Adhesive Property -- 3.5.4 Barrier Property -- 3.5.5 Electrical Property -- 3.5.6 Chemical Stability -- 3.5.7 Dimensional Stability -- 3.5.8 Surface Smoothness and Thickness Uniformity -- 3.5.9 Optical Clarity (Transmittance) -- 3.5.10 Biocompatibility -- 3.5.11 Bioabsorbability -- 3.6 Application of Flexible Substrates -- 3.6.1 Flexible Display Substrates -- 3.6.2 Flexible Electrode Substrates -- 3.6.3 Flexible Sensing Substrates -- 3.7 Development Trend of Flexible Substrates -- 3.7.1 Intelligent and Functional Flexible Substrates -- 3.7.2 Green Degradable Flexible Substrates -- 3.7.3 Optimization of Interface Compatibility of Flexible Substrates -- References -- Chapter 4 Test Methods -- 4.1 Sealing Test -- 4.1.1 Direct Diffusion Method -- 4.1.1.1 Weight Cup Test. , 4.1.1.2 Differential Pressure Method -- 4.1.1.3 Balancing Method -- 4.1.1.4 Tunable Diode Laser Absorption Spectrometry -- 4.1.1.5 Isotope Labeling Mass Spectrometry -- 4.1.2 Indirect Optical Method -- 4.1.3 Indirect Electrical Method -- 4.1.3.1 Calcium Electrical Test -- 4.1.3.2 Dielectric Measurement Method -- 4.1.4 Indirect Electrochemical Method -- 4.1.4.1 Electrochemical Impedance Spectroscopy (EIS) -- 4.1.4.2 Leakage Current Monitoring Method (LCM) -- 4.1.4.3 Linear Scanning Voltammetry (LSV) -- 4.1.5 Indirect Electromechanical Method -- 4.2 Bending Test -- 4.2.1 Static Bending and Dynamic Bending -- 4.2.2 Three‐Point Bending and Four‐Point Bending -- 4.2.3 Push Bending and Roll Bending -- 4.2.3.1 Push Bending -- 4.2.3.2 Rolling Bend -- 4.3 Mechanical Performance Testing -- 4.4 Stability Testing -- References -- Chapter 5 Flexible Electronic Encapsulation -- 5.1 Inorganic Encapsulating Material -- 5.1.1 Metal Encapsulating Material -- 5.1.1.1 Copper, Aluminum -- 5.1.1.2 Favorable Alloys -- 5.1.1.3 Copper-Tungsten Alloy (Cu-W) -- 5.1.2 Ceramic Encapsulating Material -- 5.1.2.1 Al2O3 Ceramic Encapsulation Material -- 5.1.2.2 AlN Ceramic Encapsulation Materials -- 5.1.2.3 BeO Ceramic Encapsulation Material -- 5.1.2.4 BN Ceramic Encapsulation Materials -- 5.1.3 New Trend in Inorganic Encapsulating Materials Combined with Flexible Electronic Technology -- 5.2 Organic Encapsulating Material -- 5.2.1 Polymer Encapsulating Material -- 5.2.1.1 Epoxy Resins -- 5.2.1.2 Polyimide Resins -- 5.2.1.3 Organic Silicon -- 5.2.1.4 Bismaleimide -- 5.2.1.5 Bismaleimide Triazine Resin -- 5.2.2 Development Trend of Organic Encapsulating Materials in Flexible Electronic Devices -- 5.3 Organic-Inorganic Hybrid Encapsulating Material -- 5.3.1 Application of Organic-Inorganic Hybrid Materials in Flexible Electronics -- 5.3.1.1 Strain and Pressure Sensors. , 5.3.1.2 Temperature Sensor -- 5.3.1.3 Humidity Sensor -- 5.3.1.4 Optical Sensors -- 5.3.1.5 Other Types of Sensing Devices -- 5.3.2 Development Trends of Organic-Inorganic Hybrid Materials -- References -- Chapter 6 Development of Flexible Electronics Packaging Technology -- 6.1 Flexible Electronics Packaging -- 6.1.1 Single‐Layer Thin‐Film Packaging -- 6.1.2 Multi‐Layer Thin‐Film Packaging -- 6.1.2.1 Barix Multilayer Thin‐Film Packaging -- 6.1.2.2 Other Multilayer Thin‐Film Packaging -- 6.2 Thin‐Film Packaging Technology -- 6.2.1 PECVD Atomic Layer Deposition Packaging Technology -- 6.2.1.1 Introduction to PECVD Technology -- 6.2.1.2 Development of PECVD Technology -- 6.2.2 ALD Atomic Layer Deposition Packaging Technology -- 6.2.2.1 Introduction to ALD Technology -- 6.2.2.2 Development of ALD Technology -- 6.2.3 Inkjet Packaging Technology -- 6.2.3.1 Introduction to Inkjet Encapsulation Technology -- 6.2.3.2 Continuous Inkjet Printing -- 6.2.3.3 Drop‐on‐Demand Inkjet Printing -- 6.2.3.4 Development of Inkjet Printing Technology -- References -- Chapter 7 Application of Flexible Electronics Packaging -- 7.1 Industry Chain Analysis of Flexible Electronics Packaging -- 7.1.1 Upstream, Midstream, and Downstream of the Flexible Electronics Industry Chain -- 7.1.2 Overview of the Development of Flexible Packaging Materials -- 7.2 Packaging Applications of Flexible OLED Devices -- 7.2.1 Stability Issues of Flexible OLED Devices -- 7.2.2 Flexible OLED Packaging Technology -- 7.2.2.1 Lack of Breakthrough in Encapsulating Technology -- 7.2.2.2 Low Yield Rate -- 7.3 Packaging Applications for Flexible Solar Cells -- 7.3.1 Inorganic Flexible Solar Cells -- 7.3.2 Organic Flexible Solar Cells -- 7.3.3 Dye‐Sensitized Solar Cells -- 7.3.3.1 Structure of Dye‐Sensitized Solar Cells -- 7.3.3.2 Light Anode -- 7.3.3.3 Counter Electrode. , 7.4 Packaging Applications for Flexible Electronic Devices -- 7.4.1 Basic Structure of Flexible Electronic Devices -- 7.4.2 Application of Flexible Electronic Devices -- 7.4.2.1 Optoelectronics -- 7.4.2.2 Robot -- 7.4.2.3 Biomedical -- 7.4.2.4 Energy Equipment -- 7.5 Packaging Applications for Flexible Electronics Sensors -- 7.5.1 Common Materials of Flexible Sensors -- 7.5.1.1 Flexible Substrate -- 7.5.1.2 Metal Materials -- 7.5.1.3 Inorganic Semiconductor Materials -- 7.5.1.4 Organic Materials -- 7.5.1.5 Carbon Materials -- 7.5.2 Flexible Gas Sensors -- 7.5.3 Flexible Pressure Sensors -- 7.5.4 Flexible Humidity Sensor -- 7.5.5 Normal Sensors Compare with Flexible Sensors -- References -- Chapter 8 Testing Standards -- 8.1 Terminology and Alphabetic Symbols -- 8.1.1 Scope -- 8.1.2 Terms and Definitions -- 8.1.2.1 Terminology Classification -- 8.1.2.2 General Terms -- 8.1.2.3 Physical Characteristics Related Terms -- 8.1.2.4 Terms Related to Construction Elements -- 8.1.2.5 Symbols Related to Performances and Specifications -- 8.1.2.6 Terms Related to the Production Process -- 8.1.3 Alphabetic Symbols (Quantity Symbols/Unit Symbols) -- 8.1.3.1 Classification -- 8.1.3.2 Symbols -- 8.2 Mechanical Test Method (Deformation Test) -- 8.2.1 Cyclic Bending Test -- 8.2.1.1 Purpose -- 8.2.1.2 Testing Device -- 8.2.1.3 Test Procedure -- 8.2.1.4 Test Conditions and Reports -- 8.2.2 Static Bending Test -- 8.2.2.1 Purpose -- 8.2.2.2 Testing Device -- 8.2.2.3 Test Steps -- 8.2.2.4 Test Conditions and Reports -- 8.2.3 Combined Bending Test -- 8.2.3.1 Purpose -- 8.2.3.2 Testing Device -- 8.2.3.3 Test Procedure -- 8.2.3.4 Test Conditions and Reports -- 8.2.4 Rolling Test -- 8.2.4.1 Purpose -- 8.2.4.2 Testing Device -- 8.2.4.3 Test Procedure -- 8.2.4.4 Test Conditions and Reports -- 8.2.5 Static Rolling Test -- 8.2.5.1 Purpose -- 8.2.5.2 Testing Device. , 8.2.5.3 Test Procedure.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...