GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Publication Date: 2021-10-15
    Description: The Middle Eocene Climatic Optimum (MECO) was a gradual warming event and carbon cycle perturbation that occurred between 40.5 and 40.1 Ma. A number of characteristics, including greater-than-expected deep-sea carbonate dissolution, a lack of globally coherent negative δ13C excursion in marine carbonates, a duration longer than the characteristic timescale of carbon cycle recovery, and the absence of a clear trigger mechanism, challenge our current understanding of the Earth system and its regulatory feedbacks. This makes the MECO one of the most enigmatic events in the Cenozoic, dubbed a middle Eocene “carbon cycle conundrum.” Here we use boron isotopes in planktic foraminifera to better constrain pCO2 changes over the event. Over the MECO itself, we find that pCO2 rose by only 0.55–0.75 doublings, thus requiring a much more modest carbon injection than previously indicated by the alkenone δ13C-pCO2 proxy. In addition, this rise in pCO2 was focused around the peak of the 400 kyr warming trend. Before this, considerable global carbonate δ18O change was asynchronous with any coherent ocean pH (and hence pCO2) excursion. This finding suggests that middle Eocene climate (and perhaps a nascent cryosphere) was highly sensitive to small changes in radiative forcing.
    Keywords: 551 ; boron isotopes ; pCO2 reconstruction ; Middle Eocene Climatic Optimum ; carbon cycle ; paleoclimate ; cryosphere
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Società Geologica Italiana
    In:  Rendiconti online della Società Geologica Italiana, 31 . pp. 101-102.
    Publication Date: 2020-06-04
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: The response of the marine carbon cycle to changes in atmospheric CO2 concentrations will be determined, in part, by the relative response of calcifying and non-calcifying organisms to global change. Planktonic foraminifera are responsible for a quarter or more of global carbonate production, therefore understanding the sensitivity of calcification in these organisms to environmental change is critical. Despite this, there remains little consensus as to whether, or to what extent, chemical and physical factors affect foraminiferal calcification. To address this, we directly test the effect of multiple controls on calcification in culture experiments and core-top measurements of Globigerinoides ruber. We find that two factors, body size and the carbonate system, strongly influence calcification intensity in life, but that exposure to corrosive bottom waters can overprint this signal post mortem. Using a simple model for the addition of calcite through ontogeny, we show that variable body size between and within datasets could complicate studies that examine environmental controls on foraminiferal shell weight. In addition, we suggest that size could ultimately play a role in determining whether calcification will increase or decrease with acidification. Our models highlight that knowledge of the specific morphological and physiological mechanisms driving ontogenetic change in calcification in different species will be critical in predicting the response of foraminiferal calcification to future change in atmospheric pCO2.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Paleotemperature proxy data form the cornerstone of paleoclimate research and are integral to understanding the evolution of the Earth system across the Phanerozoic Eon. Here, we present PhanSST, a database containing over 150,000 data points from five proxy systems that can be used to estimate past sea surface temperature. The geochemical data have a near-global spatial distribution and temporally span most of the Phanerozoic. Each proxy value is associated with consistent and queryable metadata fields, including information about the location, age, and taxonomy of the organism from which the data derive. To promote transparency and reproducibility, we include all available published data, regardless of interpreted preservation state or vital effects. However, we also provide expert-assigned diagenetic assessments, ecological and environmental flags, and other proxy-specific fields, which facilitate informed and responsible reuse of the database. The data are quality control checked and the foraminiferal taxonomy has been updated. PhanSST will serve as a valuable resource to the paleoclimate community and has myriad applications, including evolutionary, geochemical, diagenetic, and proxy calibration studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-23
    Description: The geological record encodes the relationship between climate and atmospheric carbon dioxide (CO 2 ) over long and short timescales, as well as potential drivers of evolutionary transitions. However, reconstructing CO 2 beyond direct measurements requires the use of paleoproxies and herein lies the challenge, as proxies differ in their assumptions, degree of understanding, and even reconstructed values. In this study, we critically evaluated, categorized, and integrated available proxies to create a high-fidelity and transparently constructed atmospheric CO 2 record spanning the past 66 million years. This newly constructed record provides clearer evidence for higher Earth system sensitivity in the past and for the role of CO 2 thresholds in biological and cryosphere evolution. Editor’s summary The concentration of atmospheric carbon dioxide is a fundamental driver of climate, but its value is difficult to determine for times older than the roughly 800,000 years for which ice core records are available. The Cenozoic Carbon dioxide Proxy Integration Project (CenCO2PIP) Consortium assessed a comprehensive collection of proxy determinations to define the atmospheric carbon dioxide record for the past 66 million years. This synthesis provides the most complete record yet available and will help to better establish the role of carbon dioxide in climate, biological, and cryosphere evolution. — H. Jesse Smith
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: The boron isotopic ratio of 11B/10B (δ11BSRM951) and trace element composition of marine carbonates are key proxies for understanding carbon cycling (pH) and palaeoceanographic change. However, method validation and comparability of results between laboratories requires carbonate reference materials. Here, we report results of an inter‐laboratory comparison study to both assign δ11BSRM951 and trace element compositions to new synthetic marine carbonate reference materials (RMs), NIST RM 8301 (Coral) and NIST RM 8301 (Foram) and to assess the variance of data among laboratories. Non‐certified reference values and expanded 95% uncertainties for δ11BSRM951 in NIST RM 8301 (Coral) (+24.17‰ ± 0.18‰) and NIST RM 8301 (Foram) (+14.51‰ ± 0.17‰) solutions were assigned by consensus approach using inter‐laboratory data. Differences reported among laboratories were considerably smaller than some previous inter‐laboratory comparisons, yet discrepancies could still lead to large differences in calculated seawater pH. Similarly, variability in reported trace element information among laboratories (e.g., Mg/Ca ± 5% RSD) was often greater than within a single laboratory (e.g., Mg/Ca 〈 2%). Such differences potentially alter proxy‐reconstructed seawater temperature by more than 2 °C. These now well‐characterised solutions are useful reference materials to help the palaeoceanographic community build a comprehensive view of past ocean changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-03-14
    Keywords: Alkalinity, total; Calcite saturation state; Calculated using CO2SYS; Carbonate ion; CARIACO_Trap; Cariaco Basin; DATE/TIME; DEPTH, water; Difference; Measured; pH; Phosphate; Salinity; Sample ID; Silicate; Species; Trap, sediment; TRAPS
    Type: Dataset
    Format: text/tab-separated-values, 316 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Marshall, Brittney J; Thunell, Robert C; Henehan, Michael J; Astor, Yrene; Wejnert, Katherine (2013): Planktonic foraminiferal area density as a proxy for carbonate ion concentration: A calibration study using the Cariaco Basin ocean time series. Paleoceanography, 28(2), 363-376, https://doi.org/10.1002/palo.20034
    Publication Date: 2023-01-13
    Description: Biweekly sediment trap samples and concurrent hydrographic measurements collected between March 2005 and October 2008 from the Cariaco Basin, Venezuela, are used to assess the relationship between [CO3]2- and the area densities (ho A) of two species of planktonic foraminifera (Globigerinoides ruber (pink) and Globigerinoides sacculifer). Calcification temperatures were calculated for each sample using species-appropriate oxygen isotope (d18O) temperature equations that were then compared to monthly temperature profiles taken at the study site in order to determine calcification depth. Ambient [CO3]2- was determined for these calcification depths using alkalinity, pH, temperature, salinity, and nutrient concentration measurements taken during monthly hydrographic cruises. The rho A, which is representative of calcification efficiency, is determined by dividing individual foraminiferal shell weights (±0.43 µg) by their associated silhouette areas and taking the sample average. The results of this study show a strong correlation between rho A and ambient [CO3]2- for both G. ruber and G. sacculifer (R**2 = 0.89 and 0.86, respectively), confirming that [CO3]2- has a pronounced effect on the calcification of these species. Though the rho A for both species reveal a highly significant (p 〈 0.001) relationship with ambient [CO3]2-, linear regression reveals that the extent to which [CO3]2- influences foraminiferal calcification is species specific. Hierarchical regression analyses indicate that other environmental parameters (temperature and [PO4]3-) do not confound the use of G. ruber and G. sacculifer rho A as a predictor for [CO3]2-. This study suggests that G. ruber and G. sacculifer rho A can be used as reliable proxies for past surface ocean [CO3]2--
    Keywords: CARIACO_Trap; Cariaco Basin; Trap, sediment; TRAPS
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-12
    Keywords: Calcification depth, apparent; Calcification temperature; Calculated from stable oxygen isotopes; CARIACO_Trap; Cariaco Basin; DATE/TIME; DEPTH, water; Difference; Globigerinoides ruber; Globigerinoides ruber pink, area; Globigerinoides ruber pink, area, standard deviation; Globigerinoides ruber pink, density, standard deviation; Globigerinoides ruber pink, density per area; Globigerinoides ruber pink, weight; Globigerinoides ruber pink, weight, standard deviation; Globigerinoides ruber pink, δ18O; Globigerinoides sacculifer; Globigerinoides sacculifer, area; Globigerinoides sacculifer, area, standard deviation; Globigerinoides sacculifer, density, standard deviation; Globigerinoides sacculifer, density per area; Globigerinoides sacculifer, weight; Globigerinoides sacculifer, weight, standard deviation; Globigerinoides sacculifer, δ18O; Sample ID; Trap, sediment; TRAPS
    Type: Dataset
    Format: text/tab-separated-values, 454 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-08-12
    Keywords: AII-42-15-14; AII-60-10; Area; Catalog Number; CH82-21; Code; Event label; EW9303-04; IPE.08178; IPE.08199; IPE.08212; IPE.08231; IPE.08316; IPE.08379; KC78; Latitude of event; Length, major axis; Length, minor axis; Longitude of event; North Atlantic; Perimeter; Sample code/label; Size fraction; South Atlantic; Species; VM20-248
    Type: Dataset
    Format: text/tab-separated-values, 15544 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...