GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
Years
  • 1
    Publication Date: 2023-02-08
    Description: The Middle Eocene Climatic Optimum (MECO) was a gradual warming event and carbon cycle perturbation that occurred between 40.5 and 40.1 Ma. A number of characteristics, including greater-than-expected deep-sea carbonate dissolution, a lack of globally-coherent negative δ 13 40 C excursion in marine carbonates, a duration longer than the characteristic timescale of carbon-cycle recovery, and the absence of a clear trigger mechanism, challenge our current understanding of the Earth system and its regulatory feedbacks. This makes the MECO one of the most enigmatic events in the Cenozoic, dubbed a middle Eocene ‘carbon cycle conundrum’. Here we use boron isotopes in planktic foraminifera to better constrain pCO2 changes over the event. Over the MECO itself, we find that pCO2 rose by only 0.55-0.75 doublings, thus requiring a much more modest carbon injection than previously indicated by the alkenone δ 13 C-pCO2 proxy. In addition, this rise in pCO2 was focused around the peak of the 400 kyr warming trend. Before this, considerable global carbonate δ 18 O change was asynchronous with any coherent ocean pH (and hence pCO2) excursion. This finding suggests that middle Eocene climate (and perhaps a nascent cryosphere) was highly sensitive to small changes in radiative forcing.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: image
    Format: text
    Format: text
    Format: text
    Format: text
    Format: text
    Format: other
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: The boron isotopic ratio of 11B/10B (δ11BSRM951) and trace element composition of marine carbonates are key proxies for understanding carbon cycling (pH) and palaeoceanographic change. However, method validation and comparability of results between laboratories requires carbonate reference materials. Here, we report results of an inter‐laboratory comparison study to both assign δ11BSRM951 and trace element compositions to new synthetic marine carbonate reference materials (RMs), NIST RM 8301 (Coral) and NIST RM 8301 (Foram) and to assess the variance of data among laboratories. Non‐certified reference values and expanded 95% uncertainties for δ11BSRM951 in NIST RM 8301 (Coral) (+24.17‰ ± 0.18‰) and NIST RM 8301 (Foram) (+14.51‰ ± 0.17‰) solutions were assigned by consensus approach using inter‐laboratory data. Differences reported among laboratories were considerably smaller than some previous inter‐laboratory comparisons, yet discrepancies could still lead to large differences in calculated seawater pH. Similarly, variability in reported trace element information among laboratories (e.g., Mg/Ca ± 5% RSD) was often greater than within a single laboratory (e.g., Mg/Ca 〈 2%). Such differences potentially alter proxy‐reconstructed seawater temperature by more than 2 °C. These now well‐characterised solutions are useful reference materials to help the palaeoceanographic community build a comprehensive view of past ocean changes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-15
    Description: The Middle Eocene Climatic Optimum (MECO) was a gradual warming event and carbon cycle perturbation that occurred between 40.5 and 40.1 Ma. A number of characteristics, including greater-than-expected deep-sea carbonate dissolution, a lack of globally coherent negative δ13C excursion in marine carbonates, a duration longer than the characteristic timescale of carbon cycle recovery, and the absence of a clear trigger mechanism, challenge our current understanding of the Earth system and its regulatory feedbacks. This makes the MECO one of the most enigmatic events in the Cenozoic, dubbed a middle Eocene “carbon cycle conundrum.” Here we use boron isotopes in planktic foraminifera to better constrain pCO2 changes over the event. Over the MECO itself, we find that pCO2 rose by only 0.55–0.75 doublings, thus requiring a much more modest carbon injection than previously indicated by the alkenone δ13C-pCO2 proxy. In addition, this rise in pCO2 was focused around the peak of the 400 kyr warming trend. Before this, considerable global carbonate δ18O change was asynchronous with any coherent ocean pH (and hence pCO2) excursion. This finding suggests that middle Eocene climate (and perhaps a nascent cryosphere) was highly sensitive to small changes in radiative forcing.
    Keywords: 551 ; boron isotopes ; pCO2 reconstruction ; Middle Eocene Climatic Optimum ; carbon cycle ; paleoclimate ; cryosphere
    Language: English
    Type: map
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Climate of the Past 13 (2017): 149-170, doi:10.5194/cp-13-149-2017.
    Description: The boron isotope composition (δ11B) of foraminiferal calcite reflects the pH and the boron isotope composition of the seawater the foraminifer grew in. For pH reconstructions, the δ11B of seawater must therefore be known, but information on this parameter is limited. Here we reconstruct Neogene seawater δ11B based on the δ11B difference between paired measurements of planktic and benthic foraminifera and an estimate of the coeval water column pH gradient from their δ13C values. Carbon cycle model simulations underscore that the ΔpH–Δδ13C relationship is relatively insensitive to ocean and carbon cycle changes, validating our approach. Our reconstructions suggest that δ11Bsw was  ∼  37.5 ‰ during the early and middle Miocene (roughly 23–12 Ma) and rapidly increased during the late Miocene (between 12 and 5 Ma) towards the modern value of 39.61 ‰. Strikingly, this pattern is similar to the evolution of the seawater isotope composition of Mg, Li and Ca, suggesting a common forcing mechanism. Based on the observed direction of change, we hypothesize that an increase in secondary mineral formation during continental weathering affected the isotope composition of riverine input to the ocean since 14 Ma.
    Description: The work was supported by NERC grants NE/I006176/1 (Gavin L. Foster and Caroline H. Lear), NE/H006273/1 (Gavin L. Foster), NE/I006168/1 and NE/K014137/1 and a Royal Society Research Merit Award (Paul A. Wilson), a NERC Independent Research Fellowship NE/K00901X/1 (Mathis P. Hain) and a NERC studentship (Rosanna Greenop).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-30
    Description: Atmospheric dust is a primary source of iron (Fe) to the open ocean, and its flux is particularly important in the high nutrient, low chlorophyll (HNLC) Southern Ocean where Fe currently limits productivity. Alleviation of this Fe limitation in the Subantarctic Zone of the Atlantic by increased dust-borne Fe supply during glacial periods has been shown to increase primary productivity. However, previous work has found no such increase in productivity in the Pacific sector. In order to constrain the relative importance of Southern Ocean Fe fertilization on glacial-interglacial carbon cycles, records of dust fluxes outside of the Atlantic sector of the Southern Ocean at the Last Glacial Maximum (LGM) are required. Here we use grain size and U-series analyses to reconstruct lithogenic and CaCO3 fluxes, and Nd, Sr and Pb isotopes to ascertain the provenance of terrigenous material delivered to four deep-water cores in the SW Pacific Ocean over the last ~30kyr. We find evidence for an increase in the relative proportion of fine-grained (0.5-12 µm) terrigenous sediment and higher detrital fluxes during the LGM compared to the Holocene. The provenance of the LGM dust varied spatially, with an older, more "continental" signature (low εNd, high 87Sr/86Sr) sourced from Australia in the northern cores, and a younger, more volcanogenic source in the southern cores (high εNd, low 87Sr/86Sr), likely sourced locally from New Zealand. Given this increase in lithogenic flux to the HNLC subantarctic Pacific Southern Ocean during the LGM, factors besides Fe-supply must have regulated the biological productivity here.
    Keywords: 232Th-fluxes; Dust provenance; grain size analysis; Last Glacial Maximum; Nd; Pb isotopes; Sr; Subantarctic zone; SW Pacific
    Type: Dataset
    Format: application/zip, 6 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-06-27
    Keywords: 232Th-fluxes; AGE; CALYPSO; Calypso Corer; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Dust provenance; Elevation of event; Event label; GC; grain size analysis; Gravity corer; IMAGES III - IPHIS; Last Glacial Maximum; Latitude of event; Lead-206/Lead-204 ratio; Lead-206/Lead-204 ratio, standard deviation; Lead-207/Lead-204 ratio; Lead-207/Lead-204 ratio, standard deviation; Lead-208/Lead-204 ratio; Lead-208/Lead-204 ratio, standard deviation; Longitude of event; Marion Dufresne (1995); MD106; MD972121; MD97-2121; Nd; Neodymium-144/Neodymium-143; Neodymium-144/Neodymium-143, standard deviation; P71; Pb isotopes; South Pacific; Sr; Strontium-87/Strontium-86 ratio; Strontium-87/Strontium-86 ratio, standard deviation; Subantarctic zone; SW Pacific; TAN1106; TAN1106/28; TAN1106/43; Tangaroa; ε-Neodymium; ε-Neodymium, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 214 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-27
    Keywords: 232Th-fluxes; AGE; Calcium carbonate; Calcium carbonate, flux; CALYPSO; Calypso Corer; Comment; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Detrital, flux; Dust, flux; Dust provenance; Elevation of event; Endmember proportion; Event label; Flux per year; GC; grain size analysis; Gravity corer; IMAGES III - IPHIS; Last Glacial Maximum; Latitude of event; Longitude of event; Marion Dufresne (1995); MD106; MD972121; MD97-2121; Nd; P71; Pb isotopes; South Pacific; Sr; Subantarctic zone; SW Pacific; TAN1106; TAN1106/28; TAN1106/43; Tangaroa; Thorium-232, flux
    Type: Dataset
    Format: text/tab-separated-values, 239 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-06-27
    Keywords: 232Th-fluxes; AGE; Angular deviation; CALYPSO; Calypso Corer; Coefficient of determination; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; Dust provenance; Elevation of event; End member; Event label; grain size analysis; IMAGES III - IPHIS; Last Glacial Maximum; Latitude of event; Longitude of event; Marion Dufresne (1995); MD106; MD972121; MD97-2121; Nd; Pb isotopes; Sr; Subantarctic zone; SW Pacific; TAN1106; TAN1106/28; TAN1106/43; Tangaroa
    Type: Dataset
    Format: text/tab-separated-values, 287 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-07-10
    Keywords: 122-761B; 144-872C; 154-926A; 154-926B; 165-1000A; AGE; Age model, paleomag, Cande and Kent (1992); boron isotopes; carbonate system; Caribbean Sea; Comment; Core; Depth, composite; Depth, description; DEPTH, sediment/rock; DRILL; Drilling/drill rig; Event label; Foraminifera; Joides Resolution; Leg122; Leg144; Leg154; Leg165; Miocene; Neogene; North Pacific Ocean; Sample comment; Section; Site; South Atlantic Ocean; South Indian Ridge, South Indian Ocean; Trilobatus trilobus, δ11B; Trilobatus trilobus, δ11B, standard deviation
    Type: Dataset
    Format: text/tab-separated-values, 469 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: van Peer, Tim E; Liebrand, Diederik; Xuan, Chuang; Lippert, Peter C; Agnini, Claudia; Blum, Nevin; Blum, Peter; Bohaty, Steven M; Bown, Paul R; Greenop, Rosanna; Kordesch, Wendy E C; Leonhardt, Dominik; Friedrich, Oliver; Wilson, Paul A (2017): Data report: revised composite depth scale and splice for IODP Site U1406. In: Proceedings of the IODP, Integrated Ocean Drilling Program, https://doi.org/10.2204/iodp.proc.342.202.2017
    Publication Date: 2023-07-24
    Description: Integrated Ocean Drilling Program (IODP) Expedition 342 recovered exceptional Paleogene to early Neogene sedimentary archives from clay-rich sediments in the northwest Atlantic Ocean. These archives present an opportunity to study Cenozoic climate in a highly sensitive region at often unprecedented resolution. Such studies require continuous records in the depth and time domains. Using records from multiple adjacent drilled holes, intervals within consecutive cores are typically spliced into a single composite record on board the R/V JOIDES Resolution using high-resolution physical properties data sets acquired before the cores are split. The highly dynamic nature of the sediment drifts drilled during Expedition 342 and the modest amplitude of variance in the physical property records made it possible to construct only highly tentative initial working splices, which require extensive postexpedition follow-up work. Postexpedition, high-resolution X-ray fluorescence (XRF) core scanning data enabled the construction of a preliminary composite depth scale and splice. Here, we present the revised composite depth scale and splice for IODP Site U1406, predominantly constructed using detailed hole-to-hole correlations of newly generated high-resolution XRF data and revisions of the initial XRF data set. The revised composite depth scale and splice serve as a reference framework for future research on Site U1406 sediments.
    Keywords: Integrated Ocean Drilling Program / International Ocean Discovery Program; IODP
    Type: Dataset
    Format: application/zip, 14 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...