GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, 272(2010), Seite 170-188, 1872-6151
    In: volume:272
    In: year:2010
    In: pages:170-188
    Type of Medium: Online Resource
    Pages: graph. Darst
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: In November 2007 we conducted a water-column and seafloor mapping study of the submarine volcanoes of the Aeolian Arc in the southern Tyrrhenian Sea aboard the R/V Urania. A total of 26 CTD casts were completed, 13 vertical casts and 13 tows. In addition to in situ measurements of temperature, conductivity, pressure and suspended particles, we also collected discrete samples for helium isotopes, methane, and trace metals. The helium isotope ratio, which is known to be an unambiguous indicator of hydrothermal input, showed a clear excess above background at 5 out of the 10 submarine volcanoes surveyed. We found the strongest helium anomaly over Marsili seamount, where the 3He/4He ratio reached maximum values of 3He = 23% at 610 m depth compared with background values of ~ 7%. We also found smaller but distinct 3He anomalies over Enerato, Eolo, Palinuro, and Secca del Capo. We interpret these results as indicating the presence of hydrothermal activity on these 5 seamounts. Hydrothermal venting has been documented at subsea vents offshore of the islands of Panarea, Stromboli, and Vulcano (Dando et al., 1999; Di Roberto et al., 2008), and hydrothermal deposits have been sampled on many of the submarine volcanoes of the Aeolian Arc (Dekov and Savelli, 2004). However, as far as we know this is the first evidence of present day hydrothermal activity on Marsili, Enerato, and Eolo. Samples collected over Filicudi, Glabro, Lamentini, Sisifo, and Alcioni had 3He very close to the regional background values, suggesting either absence of or very weak hydrothermal activity on these seamounts. Helium isotope measurements from the background hydrocasts positioned between the volcanoes revealed the presence of an excess in 3He throughout the SE Tyrrhenian Sea. These background profiles reach a consistent maximum of about 3He = 11% at 2300 m depth. Historical helium profiles collected in the central and northern Tyrrhenian Sea in 1987 and 1997 do not show this deep 3He maximum (W. Roether and B. Klein, private comm.). Furthermore, the maximum is too deep to be attributed to the volcanoes of the Aeolian Arc, which are active at 〈1000 m depth. We are currently conducting additional measurements to determine whether this deep 3He maximum is from a local hydrothermal source or is somehow related to the deep water mass transient which occurred in the eastern Mediterranean in the 1990’s.
    Description: American Geophysical Union
    Description: Published
    Description: San Francisco
    Description: 4.6. Oceanografia operativa per la valutazione dei rischi in aree marine
    Description: open
    Keywords: submarine ; hydrothermalism ; helium isotopes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-01-07
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-08-07
    Description: The southern Hikurangi Subduction Margin is characterized by significant accretion with predicted high rates of fluid expulsion. Bottom simulating reflections (BSRs) are widespread on this margin, predominantly occurring beneath thrust ridges. We present seismic data across the Porangahau Ridge on the outer accretionary wedge. The data show high-amplitude reflections above the regional BSR level. Based on polarity and reflection strength, we interpret these reflections as being caused by free gas. We propose that the presence of gas above the regional level of BSRs indicates local upwarping of the base of gas hydrate stability caused by advective heatflow from upward migrating fluids, although we cannot entirely rule out alternative processes. Simplified modelling of the increase of the thermal gradient associated with fluid flow suggests that funnelling of upward migrating fluids beneath low-permeability slope basins into the Porangahau Ridge would not lead to the pronounced thermal anomaly inferred from upwarping of the base of gas hydrate stability. Focussing of fluid flow is predicted to take place deep in the accretionary wedge and/or the underthrust sediments. Above the high-amplitude reflections, sediment reflectivity is low. A lack of lateral continuity of reflections suggests that reflectivity is lost because of a destruction of sediment layering from deformation rather than gas-hydrate-related amplitude blanking. Structural permeability from fracturing of sediments during deformation may facilitate fluid expulsion on the ridge. A gap in the BSR in the southern part of the study area may be caused by a loss of gas during fluid expulsion. We speculate that gaps in otherwise continuous BSRs that are observed beneath some thrusts on the Hikurangi Margin may be characteristic of other locations experiencing focussed fluid expulsion.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-08-07
    Description: The concentration and carbon isotope values of dissolved methane were measured in the water column at Rock Garden, Omakere Ridge and Wairarapa areas in the first dedicated cold seep investigation along the Hikurangi Margin of New Zealand. These measurements provide a high resolution impression of the methane distribution in the water column and show that these seep sites are actively venting methane with varying intensity. The highest concentrations (up to 3500 nM) measured in water samples obtained from Conductivity–Temperature–Depth (CTD) operations were at Faure Site of Rock Garden. Here, seafloor bubble release was observed by ROV. The Omakere Ridge area is actively venting over almost its entire length (not, vert, similar 25 km), in particular at Bear's Paw, a newly discovered seep site. In the Wairarapa area another new seep site called Tui was discovered, where methane measurements often exceeded 500 nM. No evidence was obtained from water column or sea surface measurements along the Hikurangi Margin to indicate that methane from seeps is reaching the sea surface. In fact, a consistent upper boundary was observed at a density of 26.85 kg/m3, which occurs at about 500 m below sea surface, above which methane decreased to background concentrations. No obvious oceanographic feature is associated with this 500 m CH4 boundary. Bubble dissolution calculations show that about 500 m was also the model-derived maximum bubble rise height. A wide range of δ13CCH4 values from − 71 to − 19‰ (VPDB) were measured, with the highest CH4 concentrations having the lowest δ13CCH4 values of about − 71 to − 68‰. Simple mixing and isotope fractionation calculations show that changes of δ13CCH4 values are predominantly caused by the dilution of seep fluids with the seawater, with some anaerobic oxidation also occurring.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...