GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    WILEY-BLACKWELL PUBLISHING
    In:  EPIC3Journal of Phycology, WILEY-BLACKWELL PUBLISHING, 53(6), pp. 1206-1222, ISSN: 0022-3646
    Publication Date: 2019-07-16
    Description: In the Argentine Sea, blooms of toxigenic dinoflagellates of the Alexandrium tamarense species complex have led to fish and bird mortalities and human deaths as a consequence of paralytic shellfish poisoning (PSP). Yet little is known about the occurrence of other toxigenic species of the genus Alexandrium, or of their toxin composition beyond coastal waters. The distribution of Alexandrium species and related toxins in the Argentine Sea was determined by sampling surface waters on an oceanographic expedition during austral spring from ~39°S to 48°S. Light microscope and SEM analysis for species identification and enumeration was supplemented by confirmatory PCR analysis from field samples. The most frequent Alexandrium taxon identified by microscopy corresponded to the classical description of A. tamarense. Only weak signals of Group I from the A. tamarense species complex were detected by PCR of bulk field samples, but phylogenetic reconstruction of rDNA sequences from single cells from one station assigned them to ribotype Group I (Alexandrium catenella). PCR probes for Alexandrium minutum and Alexandrium ostenfeldii yielded a positive signal, although A. minutum morphology did not completely match the classical description. Analysis of PSP toxin composition of plankton samples revealed toxin profiles dominated by gonyautoxins (GTX1/4). The main toxic cyclic imine detected was 13-desMe-spirolide C and this supported the association with A. ostenfeldii in the field. This study represents the first integrated molecular, morphological and toxinological analysis of field populations of the genus Alexandrium in the Argentine Sea.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    The Oceanography Society
    In:  EPIC3Oceanography, The Oceanography Society, 31(4), pp. 145-153, ISSN: 1042-8275
    Publication Date: 2018-12-19
    Description: The occurrence of harmful algal blooms (HABs) is a global problem, and particularly in San Jorge Gulf (SJG), Argentina, which supports important fisheries, HABs represent a risk to human health. We studied the diversity and distribution of toxigenic dinoflagellates in the SJG using toxin detection and quantification, and assessed the connections between cell densities, toxins, and oceanographic parameters. Phytoplankton net samples were taken for microscopic and liquid chromatographytandem mass spectrometry (LC-MSMS) analyses during an expedition aboard R/V Coriolis II in February 2014. Solid phase adsorption toxin tracking (SPATT) devices were also deployed to determine the presence of dissolved lipophilic toxins in seawater. Toxigenic dinoflagellate species and associated toxins showed different distribution patterns in the north and the south SJG. Protoceratium reticulatum and Dinophysis acuminata, together with yessotoxin and pectenotoxins, were predominantly detected in the northern SJG, mainly associated with low-nutrient, warmer waters. By contrast, Alexandrium catenella and paralytic shellfish toxins showed the highest relative abundances in the southern SJG, associated with high-nutrient, low-temperature waters. Cellular toxin content was also differently affected by environmental parameters, highlighting the complexity of HABs in this area. Spirolides were detected by SPATT for the first time in the SJG, suggesting the occurrence of A. ostenfeldii.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Csiro Publishing
    In:  EPIC3Marine and Freshwater Research, Csiro Publishing, 71(7), pp. 832-843, ISSN: 1323-1650
    Publication Date: 2021-07-01
    Description: Some dinoflagellate species of the genera Azadinium and Amphidoma (Amphidomataceae) produce azaspiracids (AZA), a group of toxins responsible for gastrointestinal disorders in humans following the consumption of contaminated shellfish. In this study, we investigated the diversity, distribution and abundance of Azadinium and AZA from field plankton samples collected during four oceanographic expeditions that covered an extended area of the Argentine Sea during different seasons. Scanning electron microscopy analyses indicated the presence of five Azadinium species: Az. dexteroporum, Az. luciferelloides, Az. obesum, Az. asperum and Az. cf. poporum. Azadinium-like cells were frequently found and were even an abundant component of plankton assemblages, showing a wide latitudinal distribution, from,38 to,55.58S, and occurring in a wide temperature and salinity range. High cell densities (up to 154 000 cells L -1) occurred in northern slope and external shelf waters during spring. AZA-2 was detected in net samples from the 20- to 200-mm fractions by tandem mass spectrometry–liquid chromatography analysis, suggesting a transfer of AZA through the food web. Our results contribute to the knowledge of the worldwide occurrence of Azadinium species and AZA, and highlight the importance of amphidomatacean species as a potential source of AZA shellfish poisoning in the south-west Atlantic Ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-17
    Description: The marine diatom genus Pseudo-nitzschia, the major known producer of the neurotoxin domoic acid (DA) responsible for the amnesic shellfish poisoning (ASP) syndrome in humans and marine mammals, is globally distributed. The genus presents high species richness in the Argentine Sea and DA has been frequently detected in the last few years in plankton and shellfish samples, but the species identity of the producers remains unclear. In the present work, the distribution and abundance of Pseudo-nitzschia species and DA were determined from samples collected on two oceanographic cruises carried out through the Argentine Sea (∼39–47°S) during summer and spring 2013. Phytoplankton composition was analysed by light and electron microscopy while DA was determined by liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). The genus Pseudo-nitzschia was recorded in 71 and 86% of samples collected in summer and spring, respectively, whereas DA was detected in only 42 and 21% of samples, respectively. Microscopic analyses revealed at least five potentially toxic species (P. australis, P. brasiliana, P. fraudulenta, P. pungens, P. turgidula), plus putatively non-toxigenic P. dolorosa, P. lineola, P. turgiduloides and unidentified specimens of the P. pseudodelicatissima complex. The species P. australis showed the highest correlation with DA occurrence (r = 0.55; p 〈 0.05), suggesting its importance as a major DA producer in the Argentine Sea. In the northern area and during summer, DA was associated with the presence of P. brasiliana, a species recorded for the first time in the Argentine Sea. By contrast, high concentrations of P. fraudulenta, P. pungens and P. turgidula did not correspond with DA occurrence. This study represents the first successful attempt to link toxigenicity with Pseudo-nitzschia diversity and cell abundance in field plankton populations in the south-western Atlantic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-17
    Description: Dinophysis is a cosmopolitan genus of marine dinoflagellates, considered as the major proximal source of diarrheic shellfish toxins and the only producer of pectenotoxins (PTX). From three oceanographic expeditions carried out during autumn, spring and late summer along the Argentine Sea (∼38–56°S), lipophilic phycotoxins were determined by liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) in size-fractionated plankton samples. Lipophilic toxin profiles were associated with species composition by microscopic analyses of toxigenic phytoplankton. Pectenotoxin-2 and PTX-11 were frequently found together with the presence of Dinophysis acuminata and Dinophysis tripos. By contrast, okadaic acid was rarely detected and only in trace concentrations, and dinophysistoxins were not found. The clear predominance of PTX over other lipophilic toxins in Dinophysis species from the Argentine Sea is in accordance with previous results obtained from north Patagonian Gulfs of the Argentine Sea, and from coastal waters of New Zealand, Chile, Denmark and United States. Dinophysis caudata was rarely found and it was confined to the north of the sampling area. Because of low cell densities, neither D. caudata nor Dinophysis norvegica could be biogeographically related to lipophilic toxins in this study. Nevertheless, the current identification of D. norvegica in the southern Argentine Sea is the first record for the southwestern Atlantic Ocean. Given the typical toxigenicity of this species on a global scale, this represents an important finding for future surveillance of plankton-toxin associations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-10-14
    Description: Semiautomated methods for microscopic image acquisition, image analysis, and taxonomic identification have repeatedly received attention in diatom analysis. Less well studied is the question whether and how such methods might prove useful for clarifying the delimitation of species that are difficult to separate for human taxonomists. To try to answer this question, three very similar Fragilariopsis species endemic to the Southern Ocean were targeted in this study: F. obliquecostata, F. ritscheri, and F. sublinearis. A set of 501 extended focus depth specimen images were obtained using a standardized, semiautomated microscopic procedure. Twelve diatomists independently identified these specimen images in order to reconcile taxonomic opinions and agree upon a taxonomic gold standard. Using image analyses, we then extracted morphometric features representing taxonomic characters of the target taxa. The discriminating ability of individual morphometric features was tested visually and statistically, and multivariate classification experiments were performed to test the agreement of the quantitatively defined taxa assignments with expert consensus opinion. Beyond an updated differential diagnosis of the studied taxa, our study also shows that automated imaging and image analysis procedures for diatoms are coming close to reaching a broad applicability for routine use.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-09-11
    Description: The recently established diatom genus Shionodiscus is characterized as possessing a labiate process on the valve face and strutted processes with long internal and reduced, or no, external extensions. Many Thalassiosira species with these features were transferred to this new genus, as well as some with short internal, strutted process extensions. Examination of samples from the Argentine continental shelf and slope waters, and from the Beagle Channel, revealed the presence of a small centric diatom that formed an extensive bloom in slope waters during spring 2005 and 2006. Analysis by light and electron microscopy revealed high similarity to specimens previously referred as Thalassiosira bioculata var. raripora. This name was never effectively published; nevertheless, the name has been adopted and observations referring to it have been reported on several occasions. Here we trace the usage of the (nomenclaturally invalid) name Thalassiosira bioculata var. raripora in the literature, and formally describe the species as Shionodiscus gaarderae, based on our observations and comparison with previous reports. A morphological comparison of this and similar taxa is also provided. In addition, we offer an emended description of S. bioculatus var. bioculatus from Ostenfeld material sampled from the "Färöer Island Naströ Fjord Plankton (16.9.1902)”, held in the Hustedt collection. Finally, we propose the transfer of Thalassiosira rosulata to Shionodiscus.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-17
    Description: The marine diatom genus Pseudo-nitzschia, the major known producer of the neurotoxin domoic acid (DA) responsible for the amnesic shellfish poisoning (ASP) syndrome in humans and marine mammals, is globally distributed. The genus presents high species richness in the Argentine Sea and DA has been frequently detected in the last few years in plankton and shellfish samples, but the species identity of the producers remains unclear. In the present work, the distribution and abundance of Pseudo-nitzschia species and DA were determined from samples collected on two oceanographic cruises carried out through the Argentine Sea (∼39–47°S) during summer and spring 2013. Phytoplankton composition was analysed by light and electron microscopy while DA was determined by liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS). The genus Pseudo-nitzschia was recorded in 71 and 86% of samples collected in summer and spring, respectively, whereas DA was detected in only 42 and 21% of samples, respectively. Microscopic analyses revealed at least five potentially toxic species (P. australis, P. brasiliana, P. fraudulenta, P. pungens, P. turgidula), plus putatively non-toxigenic P. dolorosa, P. lineola, P. turgiduloides and unidentified specimens of the P. pseudodelicatissima complex. The species P. australis showed the highest correlation with DA occurrence (r = 0.55; p 〈 0.05), suggesting its importance as a major DA producer in the Argentine Sea. In the northern area and during summer, DA was associated with the presence of P. brasiliana, a species recorded for the first time in the Argentine Sea. By contrast, high concentrations of P. fraudulenta, P. pungens and P. turgidula did not correspond with DA occurrence. This study represents the first successful attempt to link toxigenicity with Pseudo-nitzschia diversity and cell abundance in field plankton populations in the south-western Atlantic.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-12-21
    Description: The marine dinophycean genus Azadinium has been identified as the primary source of azaspiracids (AZA), a group of lipophilic phycotoxins known to accumulate in shellfish. Blooms of Azadinium in the southern Atlantic off Argentina have been described from the 1990s, but due to a lack of cultures, the diversity of South-Atlantic Azadinium has not yet been fully explored and their toxin production potential is completely unknown. During a spring 2010 research cruise covering the El Rinco´n (ER) estuarine system (North Patagonian coast, Argentina, Southwestern Atlantic) a search was conducted for the presence of Azadinium. Although neither Azadinium cells nor AZA in field plankton samples were detected, 10 clonal strains of Azadinium poporum were successfuly established by incubation of sediment samples. Argentinean A. poporum were more variable in size and shape than the type description but conformed to it by the presence of multiple pyrenoids with starch sheath, in plate pattern and arrangement, and in the position of the ventral pore located on the left side of the pore plate. In contrast to all previous description of A. poporum, isolates of the Argentinean A. poporum possessed a distinct field of pores on the second antapical plate. Conspecificity of the Argentinean isolates with A. poporum was confirmed by molecular phylogeny of concatenated ITS and LSU rDNA sequences, where all Argentinean isolates together with some Chinese A. poporum strains formed a well-supported ribotype clade within A. poporum. All isolates produced AZA with the same profile, consisting of AZA-2 as the major compound and, to a lesser extent, its phosphated form. This is the first report of a phosphated marine algal toxin. This first confirmation of the presence of AZA producing Azadinium in the Argentinean coastal area underlines the risk of AZA shellfish contamination episodes in the Southwestern Atlantic region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: The overlay of cooler nutrient enriched Beagle–Magellan water with warmer nutrient depleted shelf water and a strong stratification of the water column in the San Jorge Gulf region, Argentina, coincided with relatively high dinoflagellate abundances in April 2012, up to 34,000 cells L− 1. This dinoflagellate proliferation was dominated by Ceratium spp., but environmental conditions also favored to a lesser amount the occurrence of toxigenic dinoflagellates, such as Alexandrium tamarense and Protoceratium reticulatum, whose toxins were hardly detected in any other areas along the expedition transect of the R/V Puerto Deseado between 38 and 56°S (Ushuaia–Mar del Plata) in March/April 2012. Generally vegetative cells of A. tamarense and P. reticulatum co-occurred with their respective phycotoxins in the water column and their cysts in the upper sediment layers. Two strains of A. tamarense were isolated from the bloom sample and morphologically characterized. Their PSP toxin profiles consisted of C1/2, gonyautoxins 1/4 and to a lesser amount of neosaxitoxin and confirmed earlier data from this region. The ratios between autotrophic picoplankton and heterotrophic bacteria were higher in shelf waters in the north than in Beagle–Magellan waters in the south of San Jorge Gulf.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...