GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
  • 1
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (49 Seiten)
    Series Statement: Maria S. Merian-Berichte MSM 21/3
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Forschungsbericht ; Muschelvergiftung
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (32 Seiten, 4,19 MB) , Illustrationen, Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 03F0763A , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Enrichment of the oceans with CO2 may be beneficial for some marine phytoplankton, including harmful algae. Numerous laboratory experiments provided valuable insights into the effects of elevated pCO(2) on the growth and physiology of harmful algal species, including the production of phycotoxins. Experiments close to natural conditions are the next step to improve predictions, as they consider the complex interplay between biotic and abiotic factors that can confound the direct effects of ocean acidification. We therefore investigated the effect of ocean acidification on the occurrence and abundance of phycotoxins in bulk plankton samples during a long-term mesocosm experiment in the Gullmar Fjord, Sweden, an area frequently experiencing harmful algal blooms. During the experimental period, a total of seven phycotoxin-producing harmful algal genera were identified in the fjord, and in accordance, six toxin classes were detected. However, within the mesocosms, only domoic acid and the corresponding producer Pseudo-nitzschia spp. was observed. Despite high variation within treatments, significantly higher particulate domoic acid contents were measured in the mesocosms with elevated pCO(2). Higher particulate domoic acid contents were additionally associated with macronutrient limitation. The risks associated with potentially higher phycotoxin levels in the future ocean warrants attention and should be considered in prospective monitoring strategies for coastal marine waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-27
    Description: Enhancing ocean productivity by artificial upwelling is evaluated as a nature-based solution for food security and climate change mitigation. Fish production is intended through diatom-based plankton food webs as these are assumed to be short and efficient. However, our findings from mesocosm experiments on artificial upwelling in the oligotrophic ocean disagree with this classical food web model. Here, diatoms did not reduce trophic length and instead impaired the transfer of primary production to crustacean grazers and small pelagic fish. The diatom-driven decrease in trophic efficiency was likely mediated by changes in nutritional value for the copepod grazers. Whilst diatoms benefitted the availability of essential fatty acids, they also caused unfavorable elemental compositions via high carbon-to-nitrogen ratios (i.e. low protein content) to which the grazers were unable to adapt. This nutritional imbalance for grazers was most pronounced in systems optimized for CO 2 uptake through carbon-to-nitrogen ratios well beyond Redfield. A simultaneous enhancement of fisheries production and carbon sequestration via artificial upwelling may thus be difficult to achieve given their opposing stoichiometric constraints. Our study suggest that food quality can be more critical than quantity to maximize food web productivity during shorter-term fertilization of the oligotrophic ocean.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Geuer, Jana K; Krock, Bernd; Leefmann, Tim; Koch, Boris P (2019): Quantification, extractability and stability of dissolved domoic acid within marine dissolved organic matter. Marine Chemistry, 215, 103669, https://doi.org/10.1016/j.marchem.2019.103669
    Publication Date: 2023-03-10
    Description: Domoic acid, a neurotoxin to vertebrates predominantly produced by the diatom Pseudo-nitzschia has been suggested to serve as an organic ligand. By binding iron and copper, it could increase their solubility and bioavailability. Domoic acid has to be released by the cells to serve this function and thus occur dissolved in sea water. Samples were pre-concentrated and desalted using solid-phase extraction, a procedure commonly applied for dissolved organic matter. Dissolved domoic acid was quantified in the East Atlantic, where it occurred ubiquitously, especially in the ocean surface. The maximum domoic acid concentration measured was 173 pmol L-1 and the average domoic acid carbon yield was 7.7 ppm. Both, carbon yield and dissolved domoic acid concentration, decreased with increasing water depth. Samples were taken during the cruise PS73 (ANT-XXV) on RV Polarstern. The extraction efficiency of domoic acid was 91%. The detection limit for solid-phase extractable domoic acid (DA-SPE) was 10 pmol L-1 and limit of quantification was 26 pmol L-1. Domoic acid concentrations below the limit of detection are marked as 〈LOD and concentrations below limit of quantification are marked as 〈LOQ in the data set.
    Keywords: ANT-XXV/1; ANT-XXV/2; Canarias Sea; Carbon, organic, dissolved; Celtic Sea; CTD/Rosette; CTD-RO; DATE/TIME; DEPTH, water; Domoic acid, relative peak intensity; Domoic acid, solid phase extractable; Domoic acid carbon yield; English Channel; Event label; LATITUDE; LONGITUDE; Polarstern; PS73; PS73/002-1; PS73/004-1; PS73/006-1; PS73/006-3; PS73/008-1; PS73/010-2; PS73/013-1; PS73/015-1; PS73/015-2; PS73/017-2; PS73/019-1; PS73/022-1; PS73/024-1; PS73/026-1; PS73/026-2; PS73/028-1; PS73/030-1; PS73/032-1; PS73/032-4; PS73/034-1; PS73/036-1; PS73/038-1; PS73/038-2; PS73/042-1; PS73/044-1; PS73/047-1; PS73/051-1; PS73/054-1; PS73/056-1; PS73/062-1; PS73/064-1; PS73/069-2; PS73/070-1; PS73/071-1; PS73/072-1; PS73/073-1; PS73/074-1; PS73/079-1; PS73/083-1; PS73/086-1; PS73/088-1; PS73/090-1; PS73/092-1; PS73/094-1; PS73/095-1; PS73/S1; PS73/S10; PS73/S11; PS73/S13; PS73/S15; PS73/S16; PS73/S17; PS73/S19; PS73/S2; PS73/S21; PS73/S24; PS73/S26; PS73/S28; PS73/S29; PS73/S3; PS73/S30; PS73/S32; PS73/S34; PS73/S35; PS73/S36; PS73/S38; PS73/S39; PS73/S41; PS73/S43; PS73/S44; PS73/S45; PS73/S47; PS73/S49; PS73/S5; PS73/S50; PS73/S52; PS73/S55; PS73/S57; PS73/S58; PS73/S60; PS73/S66; PS73/S67; PS73/S68; PS73/S69; PS73/S7; PS73/S70; PS73/S71; PS73/S8; PS73/SW1; PS73/SW10; PS73/SW11; PS73/SW12; PS73/SW13; PS73/SW14; PS73/SW15; PS73/SW16; PS73/SW17; PS73/SW18; PS73/SW19; PS73/SW2; PS73/SW3; PS73/SW4; PS73/SW5; PS73/SW6; PS73/SW7; PS73/SW8; PS73/SW9; RAMSES; RAMSES hyperspectral radiometer; South Atlantic Ocean; Station label; Surface water sample; SWS; Weddell Sea
    Type: Dataset
    Format: text/tab-separated-values, 916 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Zurhelle, Christian; Nieva, Joyce; Tillmann, Urban; Krock, Bernd; Tebben, Jan (2018): Identification of novel gmnodimines and spirolides from the marine dinoflagellate Alexandrium ostenfeldii. 16(11), 446, https://doi.org/10.3390/md16110446
    Publication Date: 2023-03-16
    Description: The strain of Alexandrium ostenfeldii was isolated from a single cell from Ouwerkerkse Kreek.
    Keywords: AWI_EcolChem; BIO; Biology; Ecological Chemistry @ AWI; OuwerkerkseKreek
    Type: Dataset
    Format: application/zip, 386.9 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ma, Haiyan; Krock, Bernd; Tillmann, Urban; Cembella, Allan (2010): Towards characterization of lytic compound(s) produced by Alexandrium tamarense. Proceedings of the 13th International Conference on Harmful Algae, Ed. Ho, K. et al., International Society for the Study of Harmful Algae and Intergovernmental Oceanographic Commission of UNESCO, Hong Kong, 2008, China, 142-146, hdl:10013/epic.36232.d001
    Publication Date: 2023-01-13
    Description: We investigated optimal conditions for characterization of bioactivity of lytic compound(s) excreted by Alexandrium tamarense based on a cell-bioassay system. Allelochemical response of the cryptophyte Rhodomonas salina indicated the presence oflytic compound(s) in a reliable and reproducible way and allows for quantification of this lytic effect. The parameters tested were the incubation time of putatively lytic extracts or fractions with the target organism R. salina, different techniques for cell harvest from A. tamarense cultures and the optimal harvest time. A three hour incubation time was found to be optimal to yield a rapid response while accurately estimating effective concentration (ECso) values. Harvest of A. tamarense cultures by filtration resulted in loss of lytic activity in most cases and centrifugation was most efficient in terms of recovery of lytic activity. Maximum yield of extracellular lytic activity of A. tamarense cultures was achieved in the stationary phase. Such optimized bioassay guided fractionation techniques are a valuable asset in the isolation and eventual stmctural elucidation of the unknown lytic substances.
    Type: Dataset
    Format: application/zip, 368.1 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ma, Haiyan; Krock, Bernd; Tillmann, Urban; Cembella, Allan (2009): Preliminary characterization of extracellular allelochemicals of the toxic marine dinoflagellate Alexandrium tamarense using a Rhodomonas salina bioassay. Marine Drugs, 7(4), 497-522, https://doi.org/10.3390/md7040497
    Publication Date: 2023-01-13
    Description: Members of the marine dinoflagellate genus Alexandrium are known to exude allelochemicals, unrelated to well-known neurotoxins (PSP-toxins, spirolides), with negative effects on other phytoplankton and marine grazers. Physico/chemical characterization of extracellular lytic compounds of A. tamarense, quantified by Rhodomonas salina bioassay, showed that the lytic activity, and hence presumably the compounds were stable over wide ranges of temperatures and pH and were refractory to bacterial degradation. Two distinct lytic fractions were collected by reversed-phase solid-phase extraction. The more hydrophilic fraction accounted for about 2% of the whole lytic activity of the A. tamarense culture supernatant, while the less hydrophilic one accounted for about 98% of activity. Although temporal stability of the compounds is high, substantial losses were evident during purification. Lytic activity was best removed from aqueous phase with chloroform-methanol (3:1). A “pseudo-loss” of lytic activity in undisturbed and low-concentrated samples and high activity of an emulsion between aqueous and n-hexane phase after liquid-liquid partition are strong evidence for the presence of amphipathic compounds. Lytic activity in the early fraction of gel permeation chromatography and lack of activity after 5 kD ultrafiltration indicate that the lytic agents form large aggregates or macromolecular complexes.
    Type: Dataset
    Format: application/zip, 843.6 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ma, Haiyan; Krock, Bernd; Tillmann, Urban; Bickmeyer, Ulf; Graeve, Martin; Cembella, Allan (2011): Mode of action of membrane-disruptive lytic compounds from the marine dinoflagellate Alexandrium tamarense. Toxicon, 58(3), 247-258, https://doi.org/10.1016/j.toxicon.2011.06.004
    Publication Date: 2023-01-13
    Description: Certain allelochemicals of the marine dinoflagellate Alexandrium tamarense cause lysis of a broad spectrum of target protist cells but the lytic mechanism is poorly defined. We first hypothesized that membrane sterols serve as molecular targets of these lytic compounds, and that differences in sterol composition among donor and target cells may cause insensitivity of Alexandrium and sensitivity of targets to lytic compounds. We investigated Ca2+ influx after application of lytic fractions to a model cell line PC12 derived from a pheochromocytoma of the rat adrenal medulla to establish how the lytic compounds affect ion flux associated with lysis of target membranes. The lytic compounds increased permeability of the cell membrane for Ca2+ ions even during blockade of Ca2+ channels with cadmium. Results of a liposome assay suggested that the lytic compounds did not lyse such target membranes non-specifically by means of detergent-like activity. Analysis of sterol composition of isolates of A. tamarense and of five target protistan species showed that both lytic and non-lytic A. tamarense strains contain cholesterol and dinosterol as major sterols, whereas none of the other tested species contain dinosterol. Adding sterols and phosphatidylcholine to a lysis bioassay with the cryptophyte Rhodomonas salina for evaluation of competitive binding indicated that the lytic compounds possessed apparent high affinity for free sterols and phosphatidylcholine. Lysis of protistan target cells was dose-dependently reduced by adding various sterols or phosphatidylcholine. For three tested sterols, the lytic compounds showed highest affinity towards cholesterol followed by ergosterol and brassicasterol. Cholesterol comprised a higher percentage of total sterols in plasma membrane fractions of A. tamarense than in corresponding whole cell fractions. We conclude therefore that although the molecular targets of the lytic compounds are likely to involve sterol components of membranes, A. tamarense must have a complex self-protective mechanism that still needs to be addressed.
    Type: Dataset
    Format: application/zip, 164.3 kBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-30
    Description: The data represent species counts (cells L-1) of the three AZA-producing dinoflagellate species Azadinium spinosum, Az. poporum and Amphidoma languida (all members of the taxonomic family Amphidomataceae) of water samples taken during in total six different field expeditions on several research vessels (RV Heincke, RV Uthörn, RV Polarstern) and on in total five stationary sampling stations (Scapa Flow/Scotland, Cuxhaven/Germany, Helgoland/Germany, Wilhelmshaven/Germany, Sylt/Germany) between 2015 and 2019. The water samples have been taken using Niskin bottles (on research vessels attached to a CTD). After DNA extraction, the species cell numbers have been calculated by quantitative PCR (qPCR) analysis using respective standard curves. These samples gained from different geographical areas in the eastern North Atlantic have been analyzed as part of the RIPAZA Project (funded by the German BMBF; in cooperation with the Third Institute of Oceanography, Xiamen/China) and the results are presented and discussed in the doctoral thesis of Stephan Wietkamp (Suppl.Tab.S6, Suppl.Tab.S7). Aim of the project and especially of this data set was to provide first reference data on the biogeography (geographical distribution and seasonality) of toxigenic Amphidomataceae in the eastern North Atlantic.
    Keywords: Amphidoma languida; Azadinium; Azadinium poporum; Azadinium spinosum; Azaspiracids; Cuxhaven_WS; DATE/TIME; Dinoflagellates; DNA; Field observation; Germany; Helgoland_WS; LATITUDE; Location; LONGITUDE; North Atlantic; qPCR; QPCR; Quantitative real-time PCR (qPCR); ScapaFlow_WS; Scotland; Sylt_WS; Water sample; Wilhelmshaven_WS; WS
    Type: Dataset
    Format: text/tab-separated-values, 980 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...