GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Language
Years
  • 1
    Type of Medium: Book
    Pages: S. 1 - 251 , Ill., graph. Darst., Kt.
    Series Statement: Palaeogeography, palaeoclimatology, palaeoecology 308.2011,1/2
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: The cause of rapid hydrological changes in the tropical West Pacific during the last deglaciation remains controversial. In order to test whether these changes were triggered by abrupt climate change events in the North Atlantic Ocean, variations in precipitation during the last deglaciation (18–10 ka) were extracted from proxy records of chemical weathering and terrigenous input in the western Philippine Sea (WPS). The evolution of chemical weathering and terrigenous input since 27 ka was reconstructed using the chemical index of alteration (CIA), elemental ratios (K/Al, TOC/TN and Ti/Ca), δ13Corg, terrigenous fraction abundance and flux data from International Marine Global Change Study Program (IMAGES) core MD06-3054 collected on the upper continental slope of eastern Luzon (northern Philippines). Sediment deposited during the Last Glacial Maximum (LGM) shows weathering equal to or slightly greater than Holocene sediment in the WPS. This unusual state of chemical weathering, which is inconsistent with lower air temperatures and decreased precipitation in Luzon during the LGM, may be due to reworking of poorly consolidated sediments on the eastern Luzon continental shelf during the LGM sea-level lowstand. Rapid changes in chemical weathering, characterized by higher intensity during the Heinrich event 1 (H1) and Younger Dryas (YD) and lower intensity during the Bølling-Allerød (B/A), were linked to rapid variations in precipitation in the WPS during the last deglaciation. The higher terrigenous inputs during the LGM relative to those of the Holocene were controlled by sea-level changes rather than precipitation. The terrigenous inputs show a long-term decline during the last deglaciation, punctuated by brief spikes during the H1 and YD related to sea-level rises and rapid precipitation changes in the WPS, respectively. The proxy records of chemical weathering and terrigenous input from eastern Luzon suggest high rainfall during the H1 and YD events, consistent with inferred rainfall patterns based on Fe/Ca records from offshore Mindanao. Rapid precipitation changes in the WPS did not coincide with migrations of the Intertropical Convergence Zone (ITCZ) but, rather, were related to state shifts of the El Niño-Southern Oscillation (ENSO) during the last deglaciation. Based on proxy records and modeling results, we argue that the Atlantic meridional overturning circulation (AMOC) controlled rapid precipitation changes in the tropical West Pacific through zonal shifts of ENSO or meridional migration of the ITCZ during the last deglaciation. Our findings highlight the dominant role of the North Atlantic Ocean in the tropical hydrologic cycle during the last deglaciation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: Highlights • Elemental and radiocarbon analysis of southern Mariana Trench (SMT) sediments since 30 ka. • Shift to more reducing (suboxic) deep waters during the Last Glacial Maximum (LGM). • Blooms of giant diatom Ethmodiscus rex formed laminated diatom mats (LDMs) during LGM. •Redox changes were due to increased primary productivity induced by enhanced Asian dust inputs. • Biogenic and authigenic apatite are the main carriers of rare earth elements (REEs) in SMT sediments. Abstract: The modern southern Mariana Trench is characterized by oligotrophic surface waters, resulting in low primary productivity and well-oxygenated bottom waters. This study investigates changes in the redox conditions of bottom waters in the southern Mariana Trench during the Last Glacial Maximum (LGM) and their potential causes. We measured major, trace, and rare earth elements (REE) in three gravity cores (GC03, GC04, and GC05) and one box core (BC11) retrieved from the southern Challenger Deep at water depths from 5289 to 7118 m. The upper sediment layers of both GC05 and BC11 are dominated by valve fragments of the giant diatom Ethmodiscus rex, forming laminated diatom mats (LDMs). 14C-AMS dates of bulk organic matter show that the LDMs accumulated between 18.4 and 21.8 kyr B.P., corresponding to the LGM. Modest enrichments of U and Mo along with weak or absent Ce anomalies in the LDM point to suboxic conditions during the LGM. In contrast, non-LDM samples exhibit little to no enrichment of redox-sensitive elements as well as negative Ce anomalies, indicating deposition under oxic bottom-water conditions. The Ce anomalies are considered valid proxies for bottom-water redox conditions because REE signatures were acquired in the early diagenetic environment, as indicated by strong P-REE correlations and middle-REE enrichment associated with early diagenetic cycling of Fe-Mn oxyhydroxides in the sediment column followed by capture of the REE signal by biogenic and/or authigenic apatite. We postulate that the more reducing bottom-water conditions during the LGM were linked to increased primary productivity induced by enhanced Asian dust input. As shown in earlier studies, the increased primary productivity associated with Ethmodiscus rex blooms in the eastern Philippine Sea played a significant role in capturing atmospheric CO2 during the LGM. Consequently, the magnitude of atmospheric CO2 sequestration by giant diatom blooms during the LGM may have been greater than previously envisaged.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-12-19
    Description: The cause of massive blooms of Ethmodiscus rex laminated diatom mats (LDMs) in the eastern Philippine Sea (EPS) during the Last Glacial Maximum (LGM) remains uncertain. In order to better understand the mechanism of formation of E. rex LDMs from the perspective of dissolved silicon (DSi) utilization, we determined the silicon isotopic composition of single E. rex diatom frustules (δ30SiE. rex) from two sediment cores in the Parece Vela Basin of the EPS. In the study cores, δ30SiE. rex varies from −1.23‰ to −0.83‰ (average −1.04‰), a range that is atypical of marine diatom δ30Si and that corresponds to the lower limit of reported diatom δ30Si values of any age. A binary mixing model (upwelled silicon versus eolian silicon) accounting for silicon isotopic fractionation during DSi uptake by diatoms was constructed. The binary mixing model demonstrates that E. rex dominantly utilized DSi from eolian sources (i.e., Asian dust) with only minor contributions from upwelled seawater sources (i.e., advected from Subantarctic Mode Water, Antarctic Intermediate Water, or North Pacific Intermediate Water). E. rex utilized only ~24% of available DSi, indicating that surface waters of the EPS were eutrophic with respect to silicon during the LGM. Our results suggest that giant diatoms did not always use a buoyancy strategy to obtain nutrients from the deep nutrient pool, thus revising previously proposed models for the formation of E. rex LDMs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Highlights • High-resolution deep-water record for Pliocene western tropical Pacific. • Changes in NADW production at ∼4.6 Ma and ∼2.7 Ma influenced Pacific • These changes controlled a seesaw fluctuation between deep Pacific and Atlantic oceans. • Antarctic ice-sheet/sea-ice expansions influenced deep Pacific • These ice-mass changes resulted in long-term decline during late Pliocene. Abstract Quantifying changes in seawater carbonate chemistry is crucial to deciphering of patterns and drivers of the oceanic carbon cycle and climate change. Here, we present a new deep-water carbonate ion saturation state record for the Pliocene western tropical Pacific, reconstructed from the size-normalized weight of the planktonic foraminifer Trilobatus sacculifer of IODP Site U1490. A steep decline in deep-water occurred at ∼4.6 Ma synchronous to the enhanced production of North Atlantic Deep Water (NADW) related to the closure of the Panamanian Gateway. Subsequently, at the onset of the Northern Hemisphere glaciation at ∼2.7 Ma the weakening of NADW formation resulted in a deep-water peak. The changes in NADW production rate likely controlled a seesaw-like fluctuation in deep-water between the Pacific and Atlantic oceans. During the late Pliocene (∼3.8–2.8 Ma), Antarctic ice-sheet/sea-ice expansions sequestered CO2 in the deep Pacific through ventilation of the deep watermass, leading to a long-term decrease in deep Pacific . We infer that fluctuating NADW production rates at ∼4.6 Ma and ∼2.7 Ma influenced inter-basinal fractionation of deep-ocean carbon between the Atlantic and Pacific, and that deep Pacific carbon storage linked to expansions of Antarctic ice sheet/sea ice contributed to the lowering of atmospheric pCO2 and global cooling during the late Pliocene.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-07-01
    Description: The carbon ({delta}13Corg) and nitrogen ({delta}15N) isotopic compositions of bulk organic matter were analyzed in two high-resolution Permian-Triassic transitional sections containing microbialite in south China. The results from these shallow-marine sections show that an abrupt negative shift in {delta}15N, from [~]+3{per thousand} to [~]0{per thousand}, occurred immediately after the latest Permian mass extinction (LPE) in both sections, concurrent with a distinct negative shift in {delta}13Corg. The persistently low values of {delta}15N suggest that, following the LPE, microbial nitrogen fixation became the main source of biologically available nitrogen in the Nanpanjiang Basin and perhaps over a broader region of the eastern Paleotethys Ocean. Enhanced N fixation is probably indicative of the prevalence of stratified anoxic water masses characterized by intense denitrification and/or anaerobic ammonium oxidation at the time. Perturbation of the marine nitrogen cycle might have contributed to high temperatures following the main marine mass extinction through the release of the greenhouse gas N2O. The sharp declines in {delta}15N and {delta}13Corg may be ascribed to an abrupt change in shallow-water microbial communities, which differed in composition from contemporaneous deep-water communities.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Geobiology 15 (2017): 211–224, doi:10.1111/gbi.12222.
    Description: Records of the Ediacaran carbon cycle (635 to 541 million years ago) include the Shuram excursion (SE), the largest negative carbonate-carbon isotope excursion in Earth history (down to -12 ‰). The nature of this excursion remains enigmatic given the difficulties of interpreting a perceived extreme global decrease in the δ13C of seawater dissolved inorganic carbon (DIC). Here, we present carbonate and organic carbon isotope (δ13Ccarb and δ13Corg) records from the Ediacaran Doushantuo Formation along a proximal-to-distal transect across the Yangtze Platform of South China as a test of the spatial variation of the SE. Contrary to expectations, our results show that the magnitude and morphology of this excursion and its relationship with coexisting δ13Corg are highly heterogeneous across the platform. Integrated geochemical, mineralogical, petrographic, and stratigraphic evidence indicates that the SE is a primary marine signature. Data compilations demonstrate that the SE was also accompanied globally by parallel negative shifts of δ34S of carbonate-associated sulfate (CAS) and increased 87Sr/86Sr ratio and coastal CAS concentration, suggesting elevated continental weathering and coastal marine sulfate concentration during the SE. In light of these observations, we propose a heterogeneous oxidation model to explain the high spatial heterogeneity of the SE and coexisting δ13Corg records of the Doushantuo, with likely relevance to the SE in other regions. In this model, we infer continued marine redox stratification through the SE but with increased availability of oxidants (e.g., O2 and sulfate) limited to marginal near-surface marine environments. Oxidation of limited spatiotemporal extent provides a mechanism to drive heterogeneous oxidation of subsurface reduced carbon mostly in shelf areas. Regardless of the mechanism driving the SE, future models must consider the evidence for spatial heterogeneity in δ13C presented in this study.
    Description: We thank the National Key Basic Research Program of China (Grant 2013CB955704) and the State Key R&D project of China (Grant 2016YFA060104) as well as the NSF-ELT program and the NASA Astrobiology Institute (TWL) for funding.
    Keywords: Ediacaran carbon cycle ; Doushantuo Formation ; Shuram excursion ; Spatial heterogeneity, ; Surface-ocean oxygenation
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Li, Fei; Yan, Jiaxin; Algeo, Thomas J; Wu, Xia (2013): Palaeoceanographic conditions following the end-Permian mass extinction recorded by giant ooids (Moyang, South China). Global and Planetary Change, 105, 102-120, https://doi.org/10.1016/j.gloplacha.2011.09.009
    Publication Date: 2023-05-12
    Description: Early Triassic oceans were characterized by deposition of a number of "anachronistic facies", including microbialites, seafloor carbonate cement fans, and giant ooids. Giant ooids were particularly prevalent in Lower Triassic sections across South China and exhibit unusual features that may provide insights into marine environmental conditions following the end-Permian mass extinction. The section at Moyang (Guizhou Province) contains abundant giant ooids ranging in size between 2 and 6 mm (maximum 12 mm) and exhibiting various cortical structures, including regular, deformed, compound, regenerated and "domed". Preservation of ooid cortical structure is generally good as indicated by petrographic observations, and trace element and carbon isotope analyses suggest that diagenesis occurred in a closed diagenetic system. All ooids exhibit fine concentric laminae, frequently alternating between light-colored coarsely crystalline and dark-colored finely crystalline layers probably reflecting variation in organic content or original mineralogy. Under scanning electron microscope, biomineralized filaments or biofilms and tiny carbonate fluorapatite (CFA) crystals are commonly found in the finely crystalline layers. We infer that the precipitation of CFA was related to adsorption of P via microbial activity on the surfaces of ooids following episodic incursions of deep waters rich in carbon dioxide, hydrogen sulfide and phosphate into shallow-marine environments. Giant ooid precipitation may have been promoted in shallow ramp settings during these events by increased watermass agitation and supersaturation with respect to calcium carbonate, as well as reduced carbonate removal rates through biotic skeletal formation. Spatio-temporal distribution data reveal that giant ooids were widespread in the Tethyan region during the Early Triassic, and that they were most abundant immediately after the end-Permian crisis and disappeared gradually as metazoans repopulated marine environments.
    Keywords: DRILL; Drilling/drill rig; Moyang village, Luodian County, Guizhou Province, China; MY-1A; MY-1B
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Zhou, Lian; Algeo, Thomas J; Feng, Lanping; Zhu, Rixiang; Pan, Yongxin; Gao, Shan; Zhao, Laishi; Wu, Yuanbao (2016): Relationship of pyroclastic volcanism and lake-water acidification to Jehol Biota mass mortality events (Early Cretaceous, northeastern China). Chemical Geology, 428, 59-76, https://doi.org/10.1016/j.chemgeo.2016.02.029
    Publication Date: 2023-01-13
    Description: Geochemical analysis of the 14.4-m-thick lacustrine succession of the Lower Cretaceous Yixian Formation (Jehol Group) has yielded new insights concerning vertebrate mass mortality events in the Lake Sihetun volcanic caldera in western Liaoning Province (northeastern China) that produced the Jehol Biota fossil lagerstätten. The long-term evolution of the caldera system resulted in a shift from felsic to mafic magma chemistry, accompanied by a reduced frequency of pyroclastic eruptions, declining hydrothermal activity, and lower lacustrine productivity. The basal Tetrapod Beds exhibit strong hydrothermal influence, as indicated by enrichments of boron (B), certain alkalis (Rb, Cs), rare-earth elements (REEs), yttrium (Y), and many metals (e.g., Co, Cr, Cu, Ge, Mo, Ni, Sb, U, V, and W), and by strongly negative molybdenum isotope compositions (d98Mo to -2.50 per mil) that may record large fractionations between molybdate and thiomolybdate species in the Sihetun caldera hydrothermal system. In contrast, the overlying Fish Beds and Non-Fossiliferous Beds have an elemental and Mo-isotopic composition similar to calc-alkaline basalts (d98Mo = -0.29 ± 0.04 per mil) in the surrounding watershed, suggesting weathering of Yixian Formation volcanic rocks as the major source of sediment. During its 〈 700-kyr-long history, Lake Sihetun was affected by four environmental cycles, each commencing with a series of pyroclastic eruptions that triggered systematic changes in lakewater chemistry. Following each eruption interval, enhanced weathering of volcanic ash in the surrounding watershed caused lakewater pH to decrease and lacustrine productivity to increase. Continued weathering of bases from basement volcanic rocks subsequently produced alkaline conditions in the lake, leading to precipitation of authigenic carbonate layers and lower lacustrine productivity. Analysis of geochemical redox proxies strongly suggests that the Lake Sihetun water column was completely oxic, in contrast to earlier inferences of a stratified anoxic water column, and that ubiquitous lamination in the lacustrine succession was due to other factors such as widespread microbial mats and/or rapid sediment deposition.
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Lin, Qi; Wang, Jiasheng; Algeo, Thomas J; Sun, Fei; Lin, Rongxiao (2016): Enhanced framboidal pyrite formation related to anaerobic oxidation of methane in the sulfate-methane transition zone of the northern South China Sea. Marine Geology, 379, 100-108, https://doi.org/10.1016/j.margeo.2016.05.016
    Publication Date: 2023-01-13
    Description: Many studies have confirmed that size distributions of framboidal pyrite can be an effective indicator of bottom-water redox conditions in modern as well as ancient sedimentary environments. However, one environment in which production of framboidal pyrite has not been sufficiently studied to date is the sulfate-methane transition zone (SMTZ), in which anaerobic oxidation of methane (AOM) is coupled with microbial sulfate reduction (MSR) to enhance iron sulfide mineral precipitation (e.g., FeS2, FeS, and Fe3S4). Here, we document for the first time size distributions for pyrite framboids from the SMTZ, based on data from two sites in the methane hydrate-bearing region of the northern South China Sea. On the basis of framboid size, pyrite concentration, and sulfur isotope data, we propose new insights into the formation process of authigenic pyrite framboids within the SMTZ. We conclude that (1) Enhanced anaerobic oxidation of methane (AOM) not only plays a dominant role in the accumulation of 34S-enriched pyrite but also is responsible for formation of highly variable and sometimes exceptionally large pyrite framboids in the SMTZ; (2) Most framboids occur in 'framboid clusters' which commonly exhibit rod-like shapes, secondary overgrowths, heavier d34S values, and unusual size distributions (e.g., mean size 〉 20 µm and standard deviation 〉 3.0 µm) in the SMTZ; (3) Pyrite framboids formed in the SMTZ, which have characteristics different from those formed in the sulfate reduction zone (SRZ), do not comment on redox conditions of the overlying water column; and (4) Framboid occurrences with similar characteristics in ancient marine deposits may be considered indicators of enhanced AOM and mark the former position of the SMTZ in the paleo-marine system. In addition, significant quantities of elemental sulfur were observed in the SMTZ, possibly related to anaerobic oxidation of hydrogen sulfide and fluctuations of the SMTZ.
    Type: Dataset
    Format: application/zip, 4 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...