GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2024-02-07
    Description: Highlights • High-resolution deep-water record for Pliocene western tropical Pacific. • Changes in NADW production at ∼4.6 Ma and ∼2.7 Ma influenced Pacific • These changes controlled a seesaw fluctuation between deep Pacific and Atlantic oceans. • Antarctic ice-sheet/sea-ice expansions influenced deep Pacific • These ice-mass changes resulted in long-term decline during late Pliocene. Abstract Quantifying changes in seawater carbonate chemistry is crucial to deciphering of patterns and drivers of the oceanic carbon cycle and climate change. Here, we present a new deep-water carbonate ion saturation state record for the Pliocene western tropical Pacific, reconstructed from the size-normalized weight of the planktonic foraminifer Trilobatus sacculifer of IODP Site U1490. A steep decline in deep-water occurred at ∼4.6 Ma synchronous to the enhanced production of North Atlantic Deep Water (NADW) related to the closure of the Panamanian Gateway. Subsequently, at the onset of the Northern Hemisphere glaciation at ∼2.7 Ma the weakening of NADW formation resulted in a deep-water peak. The changes in NADW production rate likely controlled a seesaw-like fluctuation in deep-water between the Pacific and Atlantic oceans. During the late Pliocene (∼3.8–2.8 Ma), Antarctic ice-sheet/sea-ice expansions sequestered CO2 in the deep Pacific through ventilation of the deep watermass, leading to a long-term decrease in deep Pacific . We infer that fluctuating NADW production rates at ∼4.6 Ma and ∼2.7 Ma influenced inter-basinal fractionation of deep-ocean carbon between the Atlantic and Pacific, and that deep Pacific carbon storage linked to expansions of Antarctic ice sheet/sea ice contributed to the lowering of atmospheric pCO2 and global cooling during the late Pliocene.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-06
    Description: Highlights • Accurate age model during Pliocene for site U1490 established • Co-variant nutricline depth and productivity in WPWP throughout Pliocene • Deeper nutricline and lower productivity during 4.8–3.5 Ma linked to CAS closure • Nutricline shoaling during 3.5–3.0 Ma due to restriction of Indonesian Seaway Abstract The tropical Pacific played an important role in modulating global climate change during the Pliocene. Studies of tropical Pacific sea surface temperatures covering the period from the Pliocene onwards indicate that changes in the thermal mean state over the tropical Pacific can significantly influence global climate feedbacks and connect the high- and low-latitude climates. Tropical productivity fluctuations are a significant mechanism with respect to the operation of the global carbon cycle. Yet, temporal changes in primary productivity are not well constrained in the western Pacific warm pool (WPWP), where the ocean–climate system is not dominated by upwelling systems. Furthermore, the role of nutricline dynamics in forcing productivity over tectonic timescales remains uncertain. Here we use relatively high-resolution foraminiferal carbon isotope records combined with Ba/Ti ratios obtained from International Ocean Discovery Program (IODP) Site U1490 in the WPWP to reconstruct nutricline depth and paleoproductivity over the period 5.1–2.6 Ma. Our records imply that nutricline and productivity variations were closely coupled over tectonic timescales, implying that the dynamics of the nutricline play a significant role in regulating productivity in the WPWP. The deeper nutricline and lower productivity during 4.8–3.5 Ma might have been fostered by the closure of the Central American Seaway through the thickening of the mixed layer in the WPWP. We relate the overall shallower nutricline and increased productivity during 3.5–3.0 Ma to the restriction of the Indonesian Seaway via the enhanced influence and upwelling of high-latitude southern-source waters.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...