GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: The eruption of Mt. Tambora in 1815 was the largest volcanic eruption of the past 500 years. The eruption had significant climatic impacts, leading to the 1816 "year without a summer", and remains a valuable event from which to understand the climatic effects of large stratospheric volcanic sulfur dioxide injections. The eruption also resulted in one of the strongest and most easily identifiable volcanic sulfate signals in polar ice cores, which are widely used to reconstruct the timing and atmospheric sulfate loading of past eruptions. As part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP), five state-of-the-art global aerosol models simulated this eruption. We analyse both simulated background (no Tambora) and volcanic (with Tambora) sulfate deposition to polar regions and compare to ice core records. The models simulate overall similar patterns of background sulfate deposition, al-though there are differences in regional details and magnitude. However, the volcanic sulfate deposition varies considerably between the models with differences in timing, spatial pattern and magnitude. Mean simulated deposited sulfate on Antarctica ranges from 19 to 264 kgkm-2 and on Greenland from 31 to 194 kgkm-2, as compared to the mean ice-corederived estimates of roughly 50 kgkm-2 for both Greenland and Antarctica. The ratio of the hemispheric atmospheric sulfate aerosol burden after the eruption to the average ice sheet deposited sulfate varies between models by up to a factor of 15. Sources of this inter-model variability include differences in both the formation and the transport of sulfate aerosol. Our results suggest that deriving relationships between sulfate deposited on ice sheets and atmospheric sulfate burdens from model simulations may be associated with greater uncertainties than previously thought.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2023-02-08
    Description: Acetone is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere. The oceans impose a strong control on atmospheric acetone, yet the oceanic fluxes of acetone remain poorly constrained. In this work, the global budget of acetone is evaluated using two global models: CAM‐chem and GEOS‐Chem. CAM‐chem uses an online air‐sea exchange framework to calculate the bidirectional oceanic acetone fluxes, which is coupled to a data‐oriented machine‐learning approach. The machine‐learning algorithm is trained using a global suite of seawater acetone measurements. GEOS‐Chem uses a fixed surface seawater concentration of acetone to calculate the oceanic fluxes. Both model simulations are compared to airborne observations from a recent global‐scale, multiseasonal campaign, the NASA Atmospheric Tomography Mission (ATom). We find that both CAM‐chem and GEOS‐Chem capture the measured acetone vertical distributions in the remote atmosphere reasonably well. The combined observational and modeling analysis suggests that (i) the ocean strongly regulates the atmospheric budget of acetone. The tropical and subtropical oceans are mostly a net source of acetone, while the high‐latitude oceans are a net sink. (ii) CMIP6 anthropogenic emission inventory may underestimate acetone and/or its precursors in the Northern Hemisphere. (iii) The MEGAN biogenic emissions model may overestimate acetone and/or its precursors, and/or the biogenic oxidation mechanisms may overestimate the acetone yields. (iv) The models consistently overestimate acetone in the upper troposphere‐lower stratosphere over the Southern Ocean in austral winter. (v) Acetone contributes up to 30–40% of hydroxyl radical production in the tropical upper troposphere/lower stratosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Feedbacks play a fundamental role in determining the magnitude of the response of the climate system to external forcing, such as from anthropogenic emissions. The latest generation of Earth system models includes aerosol and chemistry components that interact with each other and with the biosphere. These interactions introduce a complex web of feedbacks that is important to understand and quantify. This paper addresses multiple pathways for aerosol and chemical feedbacks in Earth system models. These focus on changes in natural emissions (dust, sea salt, dimethyl sulfide, biogenic volatile organic compounds (BVOCs) and lightning) and changes in reaction rates for methane and ozone chemistry. The feedback terms are then given by the sensitivity of a pathway to climate change multiplied by the radiative effect of the change. We find that the overall climate feedback through chemistry and aerosols is negative in the sixth Coupled Model Intercomparison Project (CMIP6) Earth system models due to increased negative forcing from aerosols in a climate with warmer surface temperatures following a quadrupling of CO2 concentrations. This is principally due to increased emissions of sea salt and BVOCs which are sensitive to climate change and cause strong negative radiative forcings. Increased chemical loss of ozone and methane also contributes to a negative feedback. However, overall methane lifetime is expected to increase in a warmer climate due to increased BVOCs. Increased emissions of methane from wetlands would also offset some of the negative feedbacks. The CMIP6 experimental design did not allow the methane lifetime or methane emission changes to affect climate, so we found a robust negative contribution from interactive aerosols and chemistry to climate sensitivity in CMIP6 Earth system models.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Columbia Climate Center, Earth Institute, Columbia University
    In:  EPIC3Technical report, Columbia Climate Center, Earth Institute, Columbia University, 12 p.
    Publication Date: 2016-11-23
    Description: The Columbia Climate Center, in partnership with World Wildlife Fund, Woods Hole Research Center, and Arctic 21, held a workshop titled A 5 C Arctic in a 2 C World on July 20 and 21, 2016. The workshop was co-sponsored by the International Arctic Research Center (University of Alaska Fairbanks), the Arctic Institute of North America (Canada), the MEOPAR Network (Marine Environmental Observation, Prediction, and Response), and the Future Ocean Excellence Cluster. The goal of the workshop was to advance thinking on the science and policy implications of the temperature change in the context of the 1.5 to 2 C warming expected for the globe, as dis- cussed during the 21st session of the Conference of the Parties of the United Nations Framework Convention on Climate Change at Paris in 2015. For the Arctic, such an increase means an antic- ipated increase of roughly 3.5 to 5 C. An international group of 41 experts shared perspectives on the regional and global impacts of an up to +5 C Arctic, examined the feasibility of actively lowering Arctic temperatures, and considered realistic timescales associated with such interventions. The group also discussed the science and the political and governance actions required for alternative Arctic futures.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-14
    Description: We analyze simulated sea ice changes in eight different Earth System Models that have conducted experiment G1 of the Geoengineering Model Intercomparison Project (GeoMIP). The simulated response of balancing abrupt quadrupling of CO2 (abrupt4xCO2) with reduced shortwave radiation successfully moderates annually averaged Arctic temperature rise to about 1°C, with modest changes in seasonal sea ice cycle compared with the preindustrial control simulations (piControl). Changes in summer and autumn sea ice extent are spatially correlated with temperature patterns but much less in winter and spring seasons. However, there are changes of ±20% in sea ice concentration in all seasons, and these will induce changes in atmospheric circulation patterns. In summer and autumn, the models consistently simulate less sea ice relative to preindustrial simulations in the Beaufort, Chukchi, East Siberian, and Laptev Seas, and some models show increased sea ice in the Barents/Kara Seas region. Sea ice extent increases in the Greenland Sea, particularly in winter and spring and is to some extent associated with changed sea ice drift. Decreased sea ice cover in winter and spring in the Barents Sea is associated with increased cyclonic activity entering this area under G1. In comparison, the abrupt4xCO2 experiment shows almost total sea ice loss in September and strong correlation with regional temperatures in all seasons consistent with open ocean conditions. The tropospheric circulation displays a Pacific North America pattern-like anomaly with negative phase in G1-piControl and positive phase under abrupt4xCO2-piControl.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-07-21
    Description: We use the global Community Earth System Model to investigate the response of secondary pollutants (ozone O3, secondary organic aerosols SOA) in different parts of the world in response to modified emissions of primary pollutants during the COVID‐19 pandemic. We quantify the respective effects of the reductions in NOx and in volatile organic carbon (VOC) emissions, which, in most cases, affect oxidants in opposite ways. Using model simulations, we show that the level of NOx has been reduced by typically 40% in China during February 2020 and by similar amounts in many areas of Europe and North America in mid‐March to mid‐April 2020, in good agreement with space and surface observations. We show that, relative to a situation in which the emission reductions are ignored and despite the calculated increase in hydroxyl and peroxy radicals, the ozone concentration increased only in a few NOx‐saturated regions (northern China, northern Europe, and the US) during the winter months of the pandemic when the titration of this molecule by NOx was reduced. In other regions, where ozone is NOx‐controlled, the concentration of ozone decreased. SOA concentrations decrease in response to the concurrent reduction in the NOx and VOC emissions. The model also shows that atmospheric meteorological anomalies produced substantial variations in the concentrations of chemical species during the pandemic. In Europe, for example, a large fraction of the ozone increase in February 2020 was associated with meteorological anomalies, while in the North China Plain, enhanced ozone concentrations resulted primarily from reduced emissions of primary pollutants.
    Description: Plain Language Summary: With the reduction in economic activities following the COVID‐19 pandemic outbreak in early 2020, most emissions of air pollutants (i.e., nitrogen oxides [NOx], carbon monoxide [CO], sulfur dioxide [SO2], volatile organic carbon [VOC], black carbon [BC], organic carbon [OC]) have decreased substantially during several months in different regions of the world. This unintended global experiment offered a glimpse into a potential future in which air quality would be improved. Here, a global atmospheric model is used to assess the changes in the chemical composition of the atmosphere during the pandemic period and in the related chemical processes that lead to the formation of ozone (O3) and secondary organic aerosols (SOA). The study illustrates the nonlinearity of the air quality response to reduced NOx and VOC emissions, which depends on the chemical environment including the background level of nitrogen oxides. Meteorological variability can lead to anomalies in the concentration of chemical species with magnitudes that are as large or even larger than the perturbations due to COVID‐induced changes in the emissions.
    Description: Key Points: During the COVID‐19 lockdown, the atmospheric concentration of primary pollutants (NOx, VOCs, CO, SO2) was considerably reduced The concentration of secondary pollutants increased in NOx‐saturated areas and decreased in NOx‐limited areas The response of the chemical system depends on the relative changes in NOx and VOC emissions, and is affected by weather variability
    Description: AQ‐WATCH European project, HORIZON 2020 Research and Innovation Action
    Description: Hong Kong Research Grants Council
    Keywords: 577.276 ; pandemic period 2020 ; global atmospheric model ; air pollutants emissions
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...