GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Cachan :Springer Paris,
    Schlagwort(e): Electronic books.
    Materialart: Online-Ressource
    Seiten: 1 online resource (271 pages)
    Ausgabe: 1st ed.
    ISBN: 9782817800554
    Sprache: Französisch
    Anmerkung: Intro -- Title Page -- Copyright Page -- Table of Contents -- Remerciements -- Chapitre 1 Introduction générale -- 1.1 Le système climatique -- 1.2 Bilan énergétique et composition de l'atmosphère -- 1.3 Le cycle de l'eau -- 1.4 Aérosols et changement climatique -- 1.5 Plan de cet ouvrage -- Chapitre 2 Les aérosols atmosphériques -- 2.1 Définitions -- 2.2 Les sources d'aérosols et de précurseurs d'aérosols -- 2.2.1 Les sels marins -- 2.2.2 Les poussières désertiques -- 2.2.3 Les aérosols volcaniques -- 2.2.4 Les aérosols biogéniques -- 2.2.5 Les aérosols de combustion de la biomasse -- 2.2.6 Les aérosols de combustion des fuels fossiles -- 2.3 Distribution spatiale et temporelle des aérosols -- 2.4 Interactions aérosol-nuage-rayonnement -- 2.5 Effets climatiques des aérosols -- Chapitre 3 Propriétés physiques, chimiques et optiques des aérosols -- 3.1 Mode fin, mode d'accumulation, mode grossier -- 3.2 Distribution en taille -- 3.3 Composition chimique -- 3.3.1 Notion de mélange d'aérosols -- 3.3.2 Aérosols inorganiques -- 3.3.3 Aérosols de carbone suie -- 3.3.4 Aérosols organiques -- 3.4 Indice de réfraction -- 3.5 Déliquescence, efflorescence, phénomène d'hystérésis -- 3.6 Définition des paramètres optiques -- 3.6.1 Sections efficaces d'absorption et de diffusion -- 3.6.2 Épaisseur optique et coefficient d'Ångström -- 3.6.3 Fonction de phase -- 3.6.4 Fraction de diffusion vers le haut -- 3.7 Calcul des propriétés optiques des aérosols -- 3.8 Un mot sur les particules non sphériques -- 3.9 Aérosols et visibilité atmosphérique -- Chapitre 4 Modélisation des aérosols -- 4.1 Introduction -- 4.2 Émissions -- 4.2.1 Généralités -- 4.2.2 Combustibles fossiles, biocarburants et autres sources anthropiques -- 4.2.3 Feux de végétation -- 4.2.4 Sels marins -- 4.2.5 Poussières désertiques -- 4.2.6 Diméthylsulfure. , 4.2.7 Composés organiques volatils biogéniques -- 4.2.8 Resuspension -- 4.3 Processus atmosphériques -- 4.3.1 Nucléation -- 4.3.2 Condensation de composés semi-volatils -- 4.3.3 Coagulation -- 4.3.4 Production d'aérosols dans les nuages -- 4.3.5 Dépôt humide ou lessivage -- 4.3.6 Dépôt sec -- 4.3.7 Sédimentation -- 4.3.8 Transport des aérosols -- 4.4 Approches de modélisation -- 4.4.1 Approche massique -- 4.4.2 Approche sectionnelle -- 4.4.3 Approche modale -- 4.5 Exemple : le cycle du soufre -- Chapitre 5 Interactions matière-rayonnement et transfert radiatif -- 5.1 Le rayonnement électromagnétique -- 5.1.1 Généralités -- 5.1.2 Définitions -- 5.2 Interactions rayonnement-matière -- 5.2.1 Matière, énergie et spectre de raies -- 5.2.2 Intensité des raies spectrales -- 5.2.3 Forme des raies spectrales -- 5.2.4 Processus d'interaction rayonnement-matière -- 5.3 Modélisation des processus d'interaction -- 5.3.1 Coefficient d'absorption moléculaire -- 5.3.2 Fonction de phase de diffusion -- 5.3.3 Diffusion moléculaire -- 5.3.4 Absorption et diffusion par les aérosols -- 5.3.5 Fonction d'émission -- 5.4 Transfert radiatif dans l'atmosphère -- 5.4.1 Équation du transfert radiatif -- 5.4.2 Extinction seule -- 5.4.3 Milieu diffusant -- 5.4.4 Atmosphère plan parallèle -- 5.4.5 Résolution de l'équation de transfert -- 5.5 Bandes d'absorption, aspects énergétiques, flux actiniques -- 5.5.1 Principales bandes d'absorption des molécules atmosphériques -- 5.5.2 Flux radiatif -- 5.5.3 Méthodes à deux flux -- 5.5.4 Loi de Stefan-Boltzmann -- 5.5.5 Bilan radiatif -- 5.5.6 Flux actiniques -- 5.5.7 Polarisation du rayonnement -- Chapitre 6 Mesure des aérosols par télédétection et techniques in situ -- 6.1 Introduction à la télédétection des aérosols -- 6.2 Télédétection passive : mesure de l'extinction -- 6.2.1 Principes généraux -- 6.2.2 Photométrie depuis le sol. , 6.2.3 Mesure d'occultation depuis l'espace -- 6.2.4 Mesure de la distribution en taille -- 6.3 Télédétection passive : mesure de la diffusion -- 6.3.1 Principes généraux -- 6.3.2 Mesure du rayonnement diffus depuis le sol -- 6.3.3 Mesure du rayonnement diffus depuis l'espace -- 6.4 Mesure du rayonnement infrarouge -- 6.4.1 Principes généraux -- 6.4.2 Mesure du rayonnement infrarouge au nadir -- 6.4.3 Mesure du rayonnement infrarouge au limbe -- 6.5 Méthodes actives : lidar -- 6.5.1 Principes généraux -- 6.5.2 Équation du signal lidar -- 6.5.3 Le lidar Raman -- 6.6 Mesures in situ des aérosols -- 6.6.1 Mesures de la concentration en aérosols -- 6.6.2 Mesures de la composition chimique en aérosols -- 6.6.3 Mesures de la diffusion par les aérosols -- 6.6.4 Mesures de l'absorption par les aérosols -- 6.7 Conclusions -- Chapitre 7 Effets radiatifs des aérosols -- 7.1 Introduction -- 7.2 Effet direct des aérosols -- 7.2.1 Formule simplifiée pour les aérosols diffusants -- 7.2.2 Formule simplifiée pour les aérosols absorbants -- 7.2.3 Calcul de transfert radiatif -- 7.2.4 Estimations globales et sources d'incertitudes -- 7.3 Effet semi-direct des aérosols -- 7.4 Impact radiatif des aérosols sur la neige et la glace -- Chapitre 8 Effets indirects des aérosols -- 8.1 Introduction -- 8.2 Premier effet indirect sur les nuages d'eau liquide -- 8.2.1 Pression de vapeur saturante de l'eau -- 8.2.2 Effet Kelvin -- 8.2.3 Loi de Raoult -- 8.2.4 Théorie de Köhler -- 8.2.5 Extensions de la théorie de Köhler -- 8.2.6 Noyaux de condensation et sursaturation dans le nuage -- 8.2.7 Effets radiatifs et dynamiques dans les nuages -- 8.2.8 Principe du premier effet indirect -- 8.2.9 Observations et quantification du premier effet indirect -- 8.3 Second effet indirect sur les nuages d'eau liquide -- 8.3.1 Principe du second effet indirect. , 8.3.2 Paramétrisation du taux d'autoconversion -- 8.3.3 Estimations du second effet indirect -- 8.4 Aérosols et nuages de glace -- 8.4.1 Microphysique de la phase glace -- 8.4.2 Impact des aérosols anthropiques sur la phase glace -- 8.5 Aérosols et nuages dus à l'aviation -- 8.5.1 Émissions par les avions -- 8.5.2 Formation des traînées de condensation -- 8.5.3 Estimation de l'impact climatique des traînées -- Chapitre 9 Réponse du climat aux forçages par les aérosols -- 9.1 Forçage radiatif, rétroactions et réponse climatiques -- 9.1.1 Forçage radiatif -- 9.1.2 Rétroactions climatiques -- 9.1.3 Réponse du climat au forçage par le CO2 et efficacité climatique -- 9.1.4 Rétroactions rapides et rétroactions lentes -- 9.2 Réponse du climat aux forçages par les aérosols -- 9.2.1 Réponse à l'équilibre -- 9.2.2 Emissions passées -- 9.2.3 Détection et attribution de l'impact des aérosols -- 9.2.4 Scénarios d'émissions futures -- 9.3 Hiver nucléaire -- Chapitre 10 Effets biogéochimiques et rétroactions climatiques -- 10.1 Introduction -- 10.2 Impact des aérosols sur les écosystèmes terrestres -- 10.2.1 Rayonnement diffus et productivité primaire -- 10.2.2 Aérosols comme source de nutriments -- 10.2.3 Acidification des précipitations -- 10.3 Impact des aérosols sur les écosystèmes marins -- 10.4 Lien entre aérosols et chimie atmosphé rique -- 10.4.1 Lien entre aérosols et chimie troposphérique -- 10.4.2 Impact des aérosols stratosphériques sur la couche d'ozone et le rayonnement ultraviolet -- 10.5 Rétroactions climatiques impliquant les aérosols marins -- 10.5.1 Aérosols issus du DMS -- 10.5.2 Aérosols de sels marins -- 10.5.3 Autres aérosols primaires et secondaires d'origineocéanique -- 10.6 Rétroactions climatiques impliquant les aérosols continentaux -- 10.6.1 Aérosols organiques secondaires -- 10.6.2 Aérosols primaires d'origine biogénique. , 10.6.3 Aérosols des feux de végétation -- 10.6.4 Poussières désertiques -- 10.7 Rétroactions impliquant les aérosols stratosphériques -- Chapitre 11 Aérosols stratosphériques -- 11.1 Introduction -- 11.2 Cycle des aérosols stratosphériques -- 11.2.1 Sources d'aérosols stratosphériques -- 11.2.2 Transport dans la stratosphère -- 11.3 Physico-chimie des aérosols -- 11.4 Historique des aérosols volcaniques -- 11.4.1 Aérosols volcaniques sur la période 1750-2010 -- 11.4.2 Quelques éruptions climatiques récentes -- 11.4.3 Méga-éruption -- 11.5 Rôle des aérosols stratosphériques sur le climat -- Chapitre 12 Ingénierie climatique planétaire -- 12.1 Introduction -- 12.2 Injection d'aérosols stratosphériques -- 12.3 Ensemencement des nuages bas au-dessus des océans -- 12.4 Rôle des rétroactions rapides et lentes -- 12.5 Réflexion sur les échelles de temps -- Bibliographie -- Pour en savoir plus -- Annexes -- Annexe A Unités et constantes physiques -- Annexe B Propriétés de la distribution log-normale -- Annexe C Théorie de Mie -- C.1 Calcul du facteur d'extinction et du paramètre d'asymétrie -- C.2 Calcul de la fonction de phase -- C.3 Extension de la théorie de Mie et autres théories -- Annexe D Impact radiatif des aérosols sur la neige et la glace -- Index.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Dordrecht : Springer
    Schlagwort(e): Geography ; Earth Sciences ; Remote sensing ; Climate change. ; Atmospheric sciences. ; Aerosol ; Klimazeuge ; Aerosol ; Klima
    Beschreibung / Inhaltsverzeichnis: This textbook aims to be a one stop shop for those interested in aerosols and their impact on the climate system. It starts with some fundamentals on atmospheric aerosols, atmospheric radiation and cloud physics, then goes into techniques used for in-situ and remote sensing measurements of aerosols, data assimilation, and discusses aerosol-radiation interactions, aerosol-cloud interactions and the multiple impacts of aerosols on the climate system. The book aims to engage those interested in aerosols and their impacts on the climate system: graduate and PhD students, but also post-doctorate fellows who are new to the field or would like to broaden their knowledge. The book includes exercises at the end of most chapters. Atmospheric aerosols are small (microscopic) particles in suspension in the atmosphere, which play multiple roles in the climate system. They interact with the energy budget through scattering and absorption of solar and terrestrial radiation. They also serve as cloud condensation and ice nuclei with impacts on the formation, evolution and properties of clouds. Finally aerosols also interact with some biogeochemical cycles. Anthropogenic emissions of aerosols are responsible for a cooling effect that has masked part of the warming due to the increased greenhouse effect since pre-industrial time. Natural aerosols also respond to climate changes as shown by observations of past climates and modelling of the future climate
    Materialart: Online-Ressource
    Seiten: Online-Ressource (XVII, 311 p. 111 illus., 32 illus. in color, online resource)
    ISBN: 9789401796491
    Serie: SpringerLink
    RVK:
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    [s.l.] : Macmillan Magazines Ltd.
    Nature 397 (1999), S. 30-31 
    ISSN: 1476-4687
    Quelle: Nature Archives 1869 - 2009
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Notizen: [Auszug] High-level cirrus clouds can evolve, from the condensation trails of aircraft, which form as the mixture of warm, humid exhaust gases and colder, drier air exceeds water saturation. In addition, the particles in exhaust plumes from aircraft may allow ice nucleation at lower ...
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    [s.l.] : Nature Publishing Group
    Nature 419 (2002), S. 215-223 
    ISSN: 1476-4687
    Quelle: Nature Archives 1869 - 2009
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Notizen: [Auszug] Anthropogenic aerosols are intricately linked to the climate system and to the hydrologic cycle. The net effect of aerosols is to cool the climate system by reflecting sunlight. Depending on their composition, aerosols can also absorb sunlight in the atmosphere, further cooling the surface but ...
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    [s.l.] : Nature Publishing Group
    Nature 438 (2005), S. 1138-1141 
    ISSN: 1476-4687
    Quelle: Nature Archives 1869 - 2009
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Notizen: [Auszug] Atmospheric aerosols cause scattering and absorption of incoming solar radiation. Additional anthropogenic aerosols released into the atmosphere thus exert a direct radiative forcing on the climate system. The degree of present-day aerosol forcing is estimated from global models that ...
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    ISSN: 1476-4687
    Quelle: Nature Archives 1869 - 2009
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Notizen: [Auszug] In addition to influencing climatic conditions directly through radiative forcing, increasing carbon dioxide concentration influences the climate system through its effects on plant physiology. Plant stomata generally open less widely under increased carbon dioxide concentration, which ...
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2016-12-13
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2015-01-14
    Beschreibung: We analyze simulated sea ice changes in eight different Earth System Models that have conducted experiment G1 of the Geoengineering Model Intercomparison Project (GeoMIP). The simulated response of balancing abrupt quadrupling of CO2 (abrupt4xCO2) with reduced shortwave radiation successfully moderates annually averaged Arctic temperature rise to about 1°C, with modest changes in seasonal sea ice cycle compared with the preindustrial control simulations (piControl). Changes in summer and autumn sea ice extent are spatially correlated with temperature patterns but much less in winter and spring seasons. However, there are changes of ±20% in sea ice concentration in all seasons, and these will induce changes in atmospheric circulation patterns. In summer and autumn, the models consistently simulate less sea ice relative to preindustrial simulations in the Beaufort, Chukchi, East Siberian, and Laptev Seas, and some models show increased sea ice in the Barents/Kara Seas region. Sea ice extent increases in the Greenland Sea, particularly in winter and spring and is to some extent associated with changed sea ice drift. Decreased sea ice cover in winter and spring in the Barents Sea is associated with increased cyclonic activity entering this area under G1. In comparison, the abrupt4xCO2 experiment shows almost total sea ice loss in September and strong correlation with regional temperatures in all seasons consistent with open ocean conditions. The tropospheric circulation displays a Pacific North America pattern-like anomaly with negative phase in G1-piControl and positive phase under abrupt4xCO2-piControl.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    American Meteorological Society
    In:  EPIC3Bulletin of the American Meteorological Society, American Meteorological Society, 104(9), pp. s1-s10, ISSN: 0003-0007
    Publikationsdatum: 2024-05-08
    Beschreibung: 〈jats:title〉Abstract〈/jats:title〉 〈jats:p〉—J. BLUNDEN, T. BOYER, AND E. BARTOW-GILLIES〈/jats:p〉 〈jats:p〉Earth’s global climate system is vast, complex, and intricately interrelated. Many areas are influenced by global-scale phenomena, including the “triple dip” La Niña conditions that prevailed in the eastern Pacific Ocean nearly continuously from mid-2020 through all of 2022; by regional phenomena such as the positive winter and summer North Atlantic Oscillation that impacted weather in parts the Northern Hemisphere and the negative Indian Ocean dipole that impacted weather in parts of the Southern Hemisphere; and by more localized systems such as high-pressure heat domes that caused extreme heat in different areas of the world. Underlying all these natural short-term variabilities are long-term climate trends due to continuous increases since the beginning of the Industrial Revolution in the atmospheric concentrations of Earth’s major greenhouse gases.〈/jats:p〉 〈jats:p〉In 2022, the annual global average carbon dioxide concentration in the atmosphere rose to 417.1±0.1 ppm, which is 50% greater than the pre-industrial level. Global mean tropospheric methane abundance was 165% higher than its pre-industrial level, and nitrous oxide was 24% higher. All three gases set new record-high atmospheric concentration levels in 2022.〈/jats:p〉 〈jats:p〉Sea-surface temperature patterns in the tropical Pacific characteristic of La Niña and attendant atmospheric patterns tend to mitigate atmospheric heat gain at the global scale, but the annual global surface temperature across land and oceans was still among the six highest in records dating as far back as the mid-1800s. It was the warmest La Niña year on record. Many areas observed record or near-record heat. Europe as a whole observed its second-warmest year on record, with sixteen individual countries observing record warmth at the national scale. Records were shattered across the continent during the summer months as heatwaves plagued the region. On 18 July, 104 stations in France broke their all-time records. One day later, England recorded a temperature of 40°C for the first time ever. China experienced its second-warmest year and warmest summer on record. In the Southern Hemisphere, the average temperature across New Zealand reached a record high for the second year in a row. While Australia’s annual temperature was slightly below the 1991–2020 average, Onslow Airport in Western Australia reached 50.7°C on 13 January, equaling Australia's highest temperature on record.〈/jats:p〉 〈jats:p〉While fewer in number and locations than record-high temperatures, record cold was also observed during the year. Southern Africa had its coldest August on record, with minimum temperatures as much as 5°C below normal over Angola, western Zambia, and northern Namibia. Cold outbreaks in the first half of December led to many record-low daily minimum temperature records in eastern Australia.〈/jats:p〉 〈jats:p〉The effects of rising temperatures and extreme heat were apparent across the Northern Hemisphere, where snow-cover extent by June 2022 was the third smallest in the 56-year record, and the seasonal duration of lake ice cover was the fourth shortest since 1980. More frequent and intense heatwaves contributed to the second-greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Glaciers in the Swiss Alps lost a record 6% of their volume. In South America, the combination of drought and heat left many central Andean glaciers snow free by mid-summer in early 2022; glacial ice has a much lower albedo than snow, leading to accelerated heating of the glacier. Across the global cryosphere, permafrost temperatures continued to reach record highs at many high-latitude and mountain locations.〈/jats:p〉 〈jats:p〉In the high northern latitudes, the annual surface-air temperature across the Arctic was the fifth highest in the 123-year record. The seasonal Arctic minimum sea-ice extent, typically reached in September, was the 11th-smallest in the 43-year record; however, the amount of multiyear ice—ice that survives at least one summer melt season—remaining in the Arctic continued to decline. Since 2012, the Arctic has been nearly devoid of ice more than four years old.〈/jats:p〉 〈jats:p〉In Antarctica, an unusually large amount of snow and ice fell over the continent in 2022 due to several landfalling atmospheric rivers, which contributed to the highest annual surface mass balance, 15% to 16% above the 1991–2020 normal, since the start of two reanalyses records dating to 1980. It was the second-warmest year on record for all five of the long-term staffed weather stations on the Antarctic Peninsula. In East Antarctica, a heatwave event led to a new all-time record-high temperature of −9.4°C—44°C above the March average—on 18 March at Dome C. This was followed by the collapse of the critically unstable Conger Ice Shelf. More than 100 daily low sea-ice extent and sea-ice area records were set in 2022, including two new all-time annual record lows in net sea-ice extent and area in February.〈/jats:p〉 〈jats:p〉Across the world’s oceans, global mean sea level was record high for the 11th consecutive year, reaching 101.2 mm above the 1993 average when satellite altimetry measurements began, an increase of 3.3±0.7 over 2021. Globally-averaged ocean heat content was also record high in 2022, while the global sea-surface temperature was the sixth highest on record, equal with 2018. Approximately 58% of the ocean surface experienced at least one marine heatwave in 2022. In the Bay of Plenty, New Zealand’s longest continuous marine heatwave was recorded.〈/jats:p〉 〈jats:p〉A total of 85 named tropical storms were observed during the Northern and Southern Hemisphere storm seasons, close to the 1991–2020 average of 87. There were three Category 5 tropical cyclones across the globe—two in the western North Pacific and one in the North Atlantic. This was the fewest Category 5 storms globally since 2017. Globally, the accumulated cyclone energy was the lowest since reliable records began in 1981. Regardless, some storms caused massive damage. In the North Atlantic, Hurricane Fiona became the most intense and most destructive tropical or post-tropical cyclone in Atlantic Canada’s history, while major Hurricane Ian killed more than 100 people and became the third costliest disaster in the United States, causing damage estimated at $113 billion U.S. dollars. In the South Indian Ocean, Tropical Cyclone Batsirai dropped 2044 mm of rain at Commerson Crater in Réunion. The storm also impacted Madagascar, where 121 fatalities were reported.〈/jats:p〉 〈jats:p〉As is typical, some areas around the world were notably dry in 2022 and some were notably wet. In August, record high areas of land across the globe (6.2%) were experiencing extreme drought. Overall, 29% of land experienced moderate or worse categories of drought during the year. The largest drought footprint in the contiguous United States since 2012 (63%) was observed in late October. The record-breaking megadrought of central Chile continued in its 13th consecutive year, and 80-year record-low river levels in northern Argentina and Paraguay disrupted fluvial transport. In China, the Yangtze River reached record-low values. Much of equatorial eastern Africa had five consecutive below-normal rainy seasons by the end of 2022, with some areas receiving record-low precipitation totals for the year. This ongoing 2.5-year drought is the most extensive and persistent drought event in decades, and led to crop failure, millions of livestock deaths, water scarcity, and inflated prices for staple food items.〈/jats:p〉 〈jats:p〉In South Asia, Pakistan received around three times its normal volume of monsoon precipitation in August, with some regions receiving up to eight times their expected monthly totals. Resulting floods affected over 30 million people, caused over 1700 fatalities, led to major crop and property losses, and was recorded as one of the world’s costliest natural disasters of all time. Near Rio de Janeiro, Brazil, Petrópolis received 530 mm in 24 hours on 15 February, about 2.5 times the monthly February average, leading to the worst disaster in the city since 1931 with over 230 fatalities.〈/jats:p〉 〈jats:p〉On 14–15 January, the Hunga Tonga-Hunga Ha'apai submarine volcano in the South Pacific erupted multiple times. The injection of water into the atmosphere was unprecedented in both magnitude—far exceeding any previous values in the 17-year satellite record—and altitude as it penetrated into the mesosphere. The amount of water injected into the stratosphere is estimated to be 146±5 Terragrams, or ∼10% of the total amount in the stratosphere. It may take several years for the water plume to dissipate, and it is currently unknown whether this eruption will have any long-term climate effect.〈/jats:p〉
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , peerRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2021-02-08
    Beschreibung: Current mitigation efforts and existing future commitments are inadequate to accomplish the Paris Agreement temperature goals. In light of this, research and debate are intensifying on the possibilities of additionally employing proposed climate geoengineering technologies, either through atmospheric carbon dioxide removal or farther-reaching interventions altering the Earth's radiative energy budget. Although research indicates that several techniques may eventually have the physical potential to contribute to limiting climate change, all are in early stages of development, involve substantial uncertainties and risks, and raise ethical and governance dilemmas. Based on present knowledge, climate geoengineering techniques cannot be relied on to significantly contribute to meeting the Paris Agreement temperature goals.
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...