GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 11
    Publication Date: 2022-10-16
    Description: Numerous potentially toxic plankton species commonly occur in the Black Sea, and phycotoxins have been reported. However, the taxonomy, phycotoxin profiles, and distribution of harmful microalgae in the basin are still understudied. An integrated microscopic (light microscopy) and molecular (18S rRNA gene metabarcoding and qPCR) approach complemented with toxin analysis was applied at 41 stations in the northwestern part of the Black Sea for better taxonomic coverage and toxin profiling in natural populations. The combined dataset included 20 potentially toxic species, some of which (Dinophysis acuminata, Dinophysis acuta, Gonyaulax spinifera, and Karlodinium veneficum) were detected in over 95% of the stations. In parallel, pectenotoxins (PTX-2 as a major toxin) were registered in all samples, and yessotoxins were present at most of the sampling points. PTX-1 and PTX-13, as well as some YTX variants, were recorded for the first time in the basin. A positive correlation was found between the cell abundance of Dinophysis acuta and pectenotoxins, and between Lingulodinium polyedra and Protoceratium reticulatum and yessotoxins. Toxic microalgae and toxin variant abundance and spatial distribution was associated with environmental parameters. Despite the low levels of the identified phycotoxins and their low oral toxicity, chronic toxic exposure could represent an ecosystem and human health hazard.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-10-18
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in GigaScience 4 (2015): 27, doi:10.1186/s13742-015-0066-5.
    Description: Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.
    Description: This work was supported by the Micro B3 project, which is funded from the European Union’s Seventh Framework Programme (FP7; Joint Call OCEAN.2011‐2: Marine microbial diversity – new insights into marine ecosystems functioning and its biotechnological potential) under the grant agreement no 287589.
    Keywords: Ocean sampling day ; OSD ; Biodiversity ; Genomics ; Health index ; Bacteria ; Microorganism ; Metagenomics ; Marine ; Micro B3 ; Standards
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Churilova, T., Suslin, V., Sosik, H. M., Efimova, T., Moiseeva, N., Moncheva, S., Mukhanov, V., Rylkova, O., & Krivenko, O. Phytoplankton light absorption in the deep chlorophyll maximum layer of the Black Sea. European Journal of Remote Sensing, 52, (2019): 123-136, doi: 10.1080/22797254.2018.1533389.
    Description: Bio-optical data, obtained during six cruises in the Black Sea carried out during periods of seasonal stratification in years between 1996 and 2016, have been used to parametrize phytoplankton light absorption (aph(λ)) in the deep chlorophyll maximum (DCM) layer located near the bottom of euphotic zone. Relationships between aph(λ) and the sum of chlorophyll-a and phaeopigment concentrations (Chl-a) differed from those for the summertime upper mixed layer (UML). Notably, chlorophyll a specific absorption coefficients (a∗ph(λ)) were lower in the DCM and more comparable with a∗ph(λ) values typical for winter phytoplankton in the Black Sea. The aph(λ) spectral shapes in the DCM differed markedly from those in winter and in the summer UML, due to a shoulder at ~490 nm and a local maximum at ~550 nm corresponding to the absorption bands of phycourobilin and phycoerythrobilin. Light absorbing properties of phytoplankton in the DCM (amplitude and spectral shape of a∗ph(λ)) reflected physiological acclimation to local conditions on the cellular level and population shifts leading to changes in the biomass-dominant species, with Synechococcus spp. domination in the DCM. The parameterization of phytoplankton absorption in the DCM will enable refined spectral models of the downwelling radiance and primary production in the Black Sea.
    Description: RAS funded this research [grant numbers АААА-А18-118020890112-1, АААА-А18-118020790229-7 and АААА-18-118012690119-7]. This work was partly supported by the Russian Foundation for Basic Research, projects [numbers 17-05-00113 and 18-45-920070].
    Keywords: Phytoplankton ; light absorption ; chlorophyll-a ; cyanobacteria ; deep chlorophyll maximum ; the Black Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...