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Abstract: Numerous potentially toxic plankton species commonly occur in the Black Sea, and
phycotoxins have been reported. However, the taxonomy, phycotoxin profiles, and distribution of
harmful microalgae in the basin are still understudied. An integrated microscopic (light micros-
copy) and molecular (185 rRNA gene metabarcoding and qPCR) approach complemented with
toxin analysis was applied at 41 stations in the northwestern part of the Black Sea for better taxo-
nomic coverage and toxin profiling in natural populations. The combined dataset included 20 po-
tentially toxic species, some of which (Dinophysis acuminata, Dinophysis acuta, Gonyaulax spinifera,
and Karlodinium veneficum) were detected in over 95% of the stations. In parallel, pectenotoxins
(PTX-2 as a major toxin) were registered in all samples, and yessotoxins were present at most of the
sampling points. PTX-1 and PTX-13, as well as some YTX variants, were recorded for the first time
in the basin. A positive correlation was found between the cell abundance of Dinophysis acuta and
pectenotoxins, and between Lingulodinium polyedra and Protoceratium reticulatum and yessotoxins.
Toxic microalgae and toxin variant abundance and spatial distribution was associated with envi-
ronmental parameters. Despite the low levels of the identified phycotoxins and their low oral
toxicity, chronic toxic exposure could represent an ecosystem and human health hazard.

Keywords: toxic microalgae; light microscopy; metabarcoding; phycotoxins; Black Sea

Key Contribution: Distribution and abundance of toxic microalgal species and related toxins in the
northwestern Black Sea were investigated via an integrated approach —morphological and
molecular tools for better taxonomic coverage, complemented with toxin analysis. Numerous toxic
microalgae and phycotoxins were detected across the area, with PTX-1 and PTX-13, as well as some
YTX variants, recorded for the first time in the basin.

1. Introduction

During the past few decades, problems related to harmful algal bloom (HAB) events
have been observed globally [1-3]. Negative effects occur as a consequence of the potent
toxins produced by certain microalgal species that affect human and ecosystem health
[4,5]. The range of phycotoxins is rather extensive, and the number of reported toxins and
toxic species continues to increase [6]. On a worldwide basis, marine algal toxins are
responsible for more than 60,000 human intoxication incidents per year, with an overall
mortality rate of 1.5% [7]. In addition, they cause mortalities among wild fish, seabirds,
marine mammals, and other marine animals [4,8-11]. Chronic toxin exposure may have
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long-term consequences that are critical to human health and the sustainability or re-
covery of natural populations [4,5,12]. Toxic marine microalgae are associated with the
production of numerous phycotoxins related to different types of poisoning syn-
dromes— paralytic shellfish poisoning (PSP), diarrhetic shellfish poisoning (DSP), neu-
rotoxic shellfish poisoning (NSP), amnesic shellfish poisoning (ASP), and azaspiracid
shellfish poisoning (AZP) [13]. The types of poisoning and causative species are region-
specific [3].

The Black Sea is a specific marine basin, largely isolated from the global ocean, and
is characterized by extensive freshwater influx, strong vertical stratification, low salinity,
and anoxic conditions below depths of 150-200 m [14]. It is surrounded by six countries,
but influenced by 17 countries through the discharge of the major European rivers;
Danube, Dnieper, and Don [15]. The Black Sea has been strongly affected by eutrophica-
tion in the past, and phytoplankton blooms along with an increase in dinoflagellate
proportions have been of major concern to the health of the Black Sea ecosystem [16,17].
Although the conditions have been improved after 1992 [18], its ecological state is still
unstable [17] and requires rigorous monitoring [19]. A total number of 49 species were
listed in the “Atlas of toxic microalgae of the Black Sea and the Sea of Azov” [20], and the
number has been continuously increasing [19], especially with the application of novel
research techniques [21,22]. A large proportion of the potentially toxic species are com-
mon in the Black Sea plankton community, and some of them develop in bloom abun-
dancies [17,19]. Even though the data on phycotoxins in the Black Sea are scarce and
fragmentary [19], toxicity linked to microalgal species has been confirmed. Several in-
vestigations have been carried out along the Bulgarian and Russian coast. Domoic acid
(DA) has been detected in mussel and plankton samples from Bulgarian waters [23-25],
as well as in cultures of Pseudo-nitzschia calliantha isolated from Sevastopol Bay, Black Sea
[26]. DSP toxins (okadaic acid—OA, dinophysistoxins—DTX-1 and DTX-2, and pec-
tenotoxins—PTX-2 and PTX-2sa) have been found in farmed mussels and plankton
samples in Russian waters in the presence of Dinophysis caudata, Phalacroma rotundatum,
and Prorocentrum lima, and DSP cases have been observed in parallel [27,28]. In addition,
yessotoxins have been detected in farmed mussels with the concomitant occurrence of
Lingulodinium polyedra and Gonyaulax spinifera [29]. PSP toxins (saxitoxin—STX, B1, and
gonyautoxins —GTX-2/3) were also reported in farmed mussels with the attendant
presence of Alexandrium spp. in the samples [30]. Studies on the toxicity of plankton and
shellfish samples from the Bulgarian Black Sea coast reported PSP toxins (STX, B1, and
GTX-2/3) [25,31-33] and DSP toxins (YTX and PTX-2) [24,25], although without analytical
investigations for the determination of the source of the toxins. Phycotoxicity (Prymmne-
sium parvum-associated) has been proposed as a cause of fish mortality along the Bul-
garian coast [34]. At the basin scale, there is still a lack of in-depth knowledge of the
taxonomy, toxicity, and distribution of harmful microalgae in the Black Sea, calling for
targeted investigations [19].

The aim of this study was to provide new data and insight into the presence (dis-
tribution and abundance) of potentially toxic plankton speciesand the associated phyco-
toxins in the western/northwestern part of the Black Sea. An integrated approach (com-
bining morphological and molecular tools) complemented with toxin analysis was ap-
plied in order to assure better taxonomic coverage and toxin profiles in natural popula-
tions. The investigated area covered coastal, shelf, and open water stations, including
waters affected by the Danube river flow, which has been identified as the main source of
eutrophication in the western Black Sea [35]. Gathering data about harmful species
abundance, distribution, and toxicity at a regional level is crucial for the development
and implementation of effective monitoring programs and early warning systems [3,36].
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2. Results
2.1. Environmental Characteristics of the Sampling Sites

The ranges of all oceanographic parameters of the survey are plotted in Figure 1,
and detailed data are compiled in Supplementary Material Table S1. Surface seawater
temperature increased during the survey period, starting on 15th May (12.2 °C; st. 1),
with a peak registered on 3rd June (21.5 °C; st. 40). Sampling layer bottom temperature
did not follow a similar pattern; it was more homogenous, with closer minimum and
maximum values (from 8.3 °C at st. 38 to 12.3 °C at st. 32). On average, the stations sam-
pled at the beginning of the campaign, as well as the stations with deeper sampling lay-
ers, had lower water column temperatures compared to the other stations. Surface sea-
water salinity ranged between 10.9 (st. 19) and 18.9 (st. 36), with lower values (<16) at the
stations located in the northernmost transect (st. 16, 18-20). Sampling layer bottom salin-
ity was relatively uniform, with a narrow range of 17.9 (st. 20) to 19.1 (st. 38). Coastal
stations impacted by freshwater input were characterized by lower average salinity lev-
els than open sea stations. Oxygen concentrations at the surface ranged from 8.83 mg L-!
(st. 27) up to a maximum of 12.17 mg L (st. 12). Sampling layer bottom oxygen had
similar minimum values (8.45 mg L; st. 33) and slightly lower maximum values (11.23
mg L st. 32). Accordingly, the average values for the sampling layer were comparable
(between 9.20 and 11.42 mg L"). Fluorescence (average sampling layer levels) fluctuated
between 0.35 (st. 27 and 29) and 5.77 mg m= (st. 20). Highest values (4.7 mg m=3) were
found at stations with low average salinities <17.4 (stations 6-7 and 17-20) (the outliers in
the boxplot in Figure 1). The water transparency (SD) ranged between 1.5 m (st. 18) and
10 m (st. 3), with the lowest Secchi depths (<2.5 m) measured at coastal stations in Ro-
manian waters (st. 7, 18-21).
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Figure 1. Boxplots of environmental variables (average value for the sampling layer): T, tempera-
ture (°C); S, salinity (PSU); DO, dissolved oxygen (mg L); Fl, fluorescence (mg m=3); SD, water
transparency —Secchi depth (m).

2.2. Microscopy Identification and Enumeration of Potentially Toxic Microalgae

The microscopy analysis identified 12 putative toxic plankton taxa, out of which
nine were identified at the species level (Supplementary Material Table S2). The diatom
genus Pseudo-nitzschin dominated in terms of frequency (found at all stations) and
abundance (accounting for more than 99.5% of the total abundance of the potentially
toxic microalgae). Cells of the P. delicatissima group and P. seriata group co-occurred in
most samples with maximum abundances of 375 x 106 and 141 x 106 cells NT-! measured
at station 40. Within the group of potentially toxic microalgae, there were more species of
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dinoflagellates than diatoms, but the former were much less abundant. Potentially toxic
dinoflagellates were dominated by the genera Prorocentrum, Dinophysis, and Alexandrium,
accounting for almost 87% of the total abundance of potentially toxic dinoflagellates.
Alexandrium spp. were present at all analyzed stations in abundances ranging from 7 x 103
(st. 35) to 242 x 103 cells N'T-! (st. 18). High variability in cell size was observed, indicating
that different species were present (Supplementary Material Table S2). Spatially, the
genus was found in highest densities at the Romanian shelf stations (st. 18 and 22). Di-
nophysis was also detected across the entire sampling area, represented by four poten-
tially toxic species. Dinophysis acuminata and D. acuta were more frequent, present in 98%
of the samples. Cell abundances ranged from not observed (st. 36) to 990 x 103 cells NT-!
(st. 20) for D. acuminata, and between not observed (st. 35) and 238 x 103 cells NT-! (st. 22)
for D. acuta. Dinophysis caudata and D. sacculus were sporadic in their occurrence, with
very low abundances. Phalacroma rotundatum was present in 83% of the samples, albeit
only at low cell densities. Gonyaulax spinifera, Lingulodinium polyedra, and Protoceratium
reticulatum were widespread within the study area (found in more than 70% of the sam-
ples), detected in variable abundances, ranging up to 110 x 10° cells NT! for G. spinifera
(st. 20), 132 x 108 cells NT- for L. polyedra (st. 40), and 26 x 103 cells NT- (st. 4 and 33) for P.
reticulatum. Highest densities of G. spinifera and L. polyedra were detected at the coastal
stations (st. 20 and 33 and st. 32 and 40, respectively), whereas P. reticulatum was most
abundant both at coastal and open sea stations (st. 4 and 33). Prorocentrum cordatum was
ubiquitous (present in 93% of the samples), with a peak of 2000 x 103 cells NT! recorded
at st. 18.

2.3. Potentially Toxic Species Detected with Metabarcoding

In total, the next generation sequencing (NGS) dataset from the 40 analyzed samples
comprised 27 operational taxonomic units (OTUs) assigned to 18 potentially toxic
plankton species (Supplementary Material Table S3). Dinoflagellates were the most di-
verse group in terms of toxic species. The highest OTU diversity was observed within the
genus Alexandrium (seven OTUs in total). Three of the OTUs were clearly distinguished
at the species level, associated with A. andersonii (identified at 11 stations), A. minutum (18
stations), and A. ostenfeldii (23 stations), all of which were detected with a small number
of reads at the positive stations. Among the four remaining OTUs assigned to Alexan-
drium, three showed the same similarities with two different species (A. pseudogo-
nyaulax/A. hiranoi; A. tamarense/A. catenella; A. minutum/A. tamutum) and one was as-
signed to a reference sequence deposited as Alexandrium sp.; all were pooled as Alexan-
drium spp. In addition, one non-toxic member, A. margalefii, was detected in all samples
with significant sequence read numbers (not included in the dataset). Two of the domi-
nant OTUs detected at all stations were affiliated with Gonyaulax spinifera and Karlod-
inium veneficun. The OTU annotated as Profoceratium reticulatum was widely distributed,
being recorded at most of the sampling sites (83%) with fluctuating sequence numbers,
whereas the OTU assigned to Lingulodinium polyedra was scarce, being recorded at only
33% of the stations with low sequence reads. Dinophysis was represented by four OTUs,
two of which were clearly identified at the species level (associated with D. acuta and D.
acuminata), and the other two shared similarities with multiple Dinophysis species (and
were thus merged as Dinophysis spp.). The genus was widespread, with D. acuta and D.
acuminata found in 80% and 58% of samples, respectively. Within the two OTUs assigned
to Prorocentrum, only one was defined at the species level, allocated to Prorocentrum cor-
datum (detected at seven stations), while the other OTU, accepted at the genus level due
to the same similarity with reference sequences of multiple potentially toxic Prorocentrum
species, was more frequently found in the sampling area (35 stations). The other OTUs
affiliated with potentially toxic dinoflagellates (Amphidoma languida, Phalacroma rotunda-
tum, Gymnodinium catenatum, and Polykrikos hartmannii) were unevenly distributed across
the stations, generally with a small number of sequences (Supplementary Material Table
S3).
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Diatoms were represented by five OTUs assigned to three potentially toxic Pseu-
do-nitzschia species. The majority of the sequences (three OTUs) were assigned to P. cal-
liantha, present in 80% of the samples, whereas the OTUs associated with P. delicatissima
and P. pungens appeared sporadically.

Among potentially toxic pelagophytes, only Aureococcus anophagefferens was de-
tected at two stations, with a single sequence per sample.

2.4. qPCR Analyses of Field Samples

Of the 41 DNA samples from Niskin bottles tested with the amphidomatacean SYBR
Green qPCR assay, samples from 11 stations (st. 2-5, 12-18; Supplementary Material Ta-
ble S4) passed the evaluation process and revealed the presence of target DNA. However,
no amplification was observed in any of these 11 samples in the three species-specific
TaqMan assays targeting Az. spinosum, Az. poporum, and Am. languida. Thus, based on
qPCR analysis, Amphidomataceae DNA in general was present in the samples, but none
of the three specifically targeted AZA-producing species were detected.

2.5. Toxin Distribution

Plankton samples were analyzed for a wide array of phycotoxins. With respect to
paralytic shellfish toxins (PST), domoic acid (DA), azaspiracids (AZA), cyclic imines
(gymnodimines, pinnatoxins, and spirolides), goniodomins, karlotoxins (KmTx), okadaic
acid, and dinophysistoxins, none were detected in the planktonic field samples of the
survey. The respective detection limits are provided in the supplementary information
(Supplementary Material Table S5). In contrast to the absence of these groups of phyco-
toxins, pectenotoxins (PTXs) and yessotoxins (YTXs) were detected. Among PTXs (for
structures see Supplementary Material Figure S1), the most frequently occurring variant
in terms of total abundance and geographic distribution was PTX-2, of which the highest
levels detected during this survey were 206 ng NT! in the 20-50 um size fraction (Figure
2; Supplementary Material Table S6) of st. 25, and up to 426 ng NT! in the 50-200 um size
fraction (Figure 3; Supplementary Material Table S7) of st. 22. In addition to PTX-2, PTX-1
was also detected at high abundances, with maxima of 37 ng NT! in the 20-50 pm size
fraction of st. 41 and 336 ng NT-! in the 50-200 pum size fraction of st. 22. Both PTXs were
generally found at higher abundance in the 50-200 um fraction than in the 20-50 pm
fraction. The third PTX detected in this survey was PTX-13, which, in general, was the
least abundant PTX, with maxima of 15 and 14 ng NT! in the 20-50 and the 50-200 um
size fractions of st. 15 and 22, respectively (Figures 2 and 3; Supplementary Material Ta-
bles S6 and S7). In contrast to PTX-1 and PTX-2, PTX-13 was more abundant in the 20-50
um fraction than in the 50-200 um fraction.
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Figure 2. Geographic distribution and abundance (ng NT) of toxin variants in the 20-50 um size

fraction (toxin variant abbreviations are listed in Table S6).
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Figure 3. Geographic distribution and abundance (ng NT!) of toxin variants in the 50-200 um size

fraction (toxin variant abbreviations are listed in Table S7).

The other phycotoxin group present in the field sample of this study was the yes-
sotoxin (YTX) group (for structures see Supplementary Material Figure 52), out of which 10
variants were detected in total. In addition to the base compound yessotoxin (YTX), nine
other YTX variants were detected in the field samples. Among these variants were one of
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the three nor-ring A isomers 41-keto-, 40-epi-41-keto-, or 41-keto-enone-nor-ring A YTX
(compounds #17/18/19 in [37]) with a molecular weight of 992 Da, as well as one of the
three isomers 41-keto-, 40-epi-41-keto-, or 41-keto-enone-YTX (compounds #6/7/8 in [37])
with a molecular weight of 1048 Da. These two groups of isomers cannot be further re-
solved by mass spectrometry, and due to the lack of standard compounds, unambiguous
assignment to one of the three alternative isomeric structures is not possible. The re-
maining seven YTX variants include a structurally unassigned YTX variant (entry 20/21
in [37]) with a molecular weight of 1062 Da, 9-methyl-41a-homo YTX (#10, 1170 Da),
44,55-dihydroxy-YTX (#13, 1176 Da), compound #15 ([37]; 1204 Da), compound #16 ([37];
1086 Da), entry 45 ([37]; 1160 Da), and 41a-homo-44-oxotrinor YTX (#3 in [38]; 1132 Da).

Of the YTX group, YTX was present in levels up to 40 ng NT-! in the 20-50 um frac-
tion, and up to 22 ng NT" in the 50-200 pum fraction (Supplementary Material Tables S6 and
57). YTX was detected in 66% of all stations in the 20-50 um fraction, but only in 14% of
the 50—200 pum fraction. The YTX variant with the highest record was #6/7/8 with 17 ng
NT-! in the 20-50 pm fraction of station 32 and 140 ng NT-! in the 50-200 um fraction of
station 31. Compound #15 was also present with relatively high abundances of 51 ng NT~
in the 20-50 um fraction of station 40, and 68 ng NT-" in the 50-200 pum fraction of station
31. All other YTX variants were detected at lower levels (Supplementary Material Tables S6
and 57). Interestingly, YTX entry 21/22 and #3 were only detected in the 20-50 pum size
fraction, not the 50-200 um fraction; the opposite was the case for YIX #10 and #16,
which were only present in the 50-200 pum fraction, not the 20-50 um fraction. It is also
noteworthy that most YTX variants were predominantly present in the southern stations
(23-41) of the cruise transect (Figures 2 and 3).

2.6. Identified Potentially Toxic Plankton Species and Correspondence with Detected Phycotoxins

Integration of the results derived by morphological and metabarcoding approaches
allowed for the detection of a total number of 20 potentially toxic species (Table 1).

Table 1. Integrated list of potentially toxic species identified by light microscopy (LM) and
metabarcoding (NGS) (“+” identified; ”-“ not identified).

zZ
9]
»

Species LM
Pseudo-nitzschia calliantha -
Pseudo-nitzschia delicatissima -
Pseudo-nitzschia pungens -
Alexandrium andersonii -
Alexandrium minutum -
Alexandrium ostenfeldii -
Amphidoma languida -
Dinophysis acuminata
Dinophysis acuta
Dinophysis caudata
Dinophysis sacculus
Gonyaulax spinifera
Gymnodinium catenatum -
Karlodinium veneficum -
Lingulodinium polyedra
Phalacroma rotundatum
Polykrikos hartmannii -
Prorocentrum cordatum
Protoceratium reticulatum
Aureococcus anophagefferens -

' + o+ + + + + o+ o+ o+

+ o+ + o+ o+
1

+ o+ + + o+ + o+ o+ o+

The comparison of toxic microalgal taxa identified by metabarcoding and light mi-
croscopy revealed that seven species were detected using both approaches. Some species
were discriminated only in the NGS dataset (e.g., species belonging to genera Alexan-
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Ph.rot.

drium and Pseudo-nitzschia, as well as Karlodinium veneficum, Polykrikos hartmannii, and
Aureococcus anophagefferens), whereas microscopy-based analysis reported two Dinophysis
species (Dinophysis sacculus and Dinophysis caudata) that were not clearly reflected in the
NGS dataset (instead, two OTUs sharing similarities with multiple Dinophysis species
were registered). In terms of frequency distribution, most of the toxic species were more
frequent in the LM analyses. Spearman rank correlation analyses between cell abundance
and number of reads per sample of taxa identified using both methods revealed a statis-
tically significant positive correlation only for D. acuta (rs = 0.4), L. polyedra (rs = 0.74), and
P. reticulatum (rs = 0.43).

Spearman rank correlation analyses between plankton data (LM-based cell abun-
dance and NGS-derived number of reads) and toxin abundances revealed that LM data
correlated significantly with the toxin abundances (20-50 um and 50-200 um fractions),
whereas NGS data showed only weak correlations (data not shown). The LM dataset was
selected for further statistical analyses. Pectenotoxins were positively correlated only
with D. acuta cell abundance (Figure 4a, b). In fraction 20-50 pm, the correlation with
PTX-2 was weak, and that with PTX-1 was moderate (Figure 4a), whereas in the larger
fraction (50-200 pum), all PTXs were moderately correlated with D. acuta cell abundance
(Figure 4b). For yessotoxins, in the smaller fraction (20-50 pum), strong correlations (rs
values between 0.6 and 0.83) were found between L. polyedra cell abundance and all YTX
variants (except for #17/18/19, which was not correlated with any of the possible identi-
fied producers), whereas P. reticulatum was moderately correlated with YTX only (Figure
4c). In the larger fraction (50-200 pm), only weak correlations were observed between L.
polyedra and variants #6/7/8, e#45, and #15, and between P. reticulatum and variants #16
and #10, with the exception of YTX, which was moderately correlated with L. polyedra cell
abundance (Figure 4d).
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Figure 4. Correlation analysis between the toxic dinoflagellate species and the relevant toxin vari-
ants by fractions: (a,c) 20-50 um fraction; (b,d) 50-200 um fraction. Circle size and color intensity
are proportional to the Spearman’s rho correlation coefficients. Empty spaces denote
non-significant correlation (two-tailed p-value >0.05). Dinophysis acuminata (D.acum.), Dinophysis
acuta (D.acut.), Phalacroma rotundatum (Ph.rot.), Gonyaulax spinifera (G.spin.), Lingulodinium polyedra
(L.poly.), Protoceratium reticulatum (P.reti.). *a,b Dinophysis caudata and D. sacculus were excluded
from the analysis because they were detected at a limited number of stations. Toxin variant abbre-

viations are listed in Tab

les S6 and S7.

Detrended canonical analysis (DCA) of gradient lengths for community composition
produced values much lower than 3 and close to 3 (DCA1 =2.68, DCA2 =2.99) for the
abundances of toxin variants, and multicollinearity diagnostics of environmental data
showed VIFs <5 for all explanatory variables. The resultant models explained nearly 50%
of the variation in cell abundance data, and approximately 30% in the abundances of
toxin variants (Table 2).

Table 2. Redundancy analysis (RDA) and canonical correspondence analysis (CCA) models: sta-
tistical significance outcomes and percentage contributions of explanatory variables to total vari-
ance explained by the models.

RDA model cell abundance vs.
environmental data

CCA model toxin variant abundance
vs. environmental data

Proportion of the total variance (inertia) explained

Constrained 55.68% | 36%
Model significance (ANOVA)
p-values p =0.001 p =0.001
R? 0.57 n/a
R2aq; 0.49 n/a

Axes significan

ce (ANOVA) and contribution to total

variance explained by the model

p-values

RDA1 axis p = 0.001; 36.04%
RDA: axis p =0.001; 8.94%
Contribution of variables to the
axis explains the biggest portion of
variance in data:

RDA1-T, S, DO, and SD

CCA1 axis p = 0.001; 22.92%
CCA: axis p = 0.048; 9.75%.
Contribution of variables to the axis
explains the biggest portion of variance
in data:

CCA:1-T, S, Fl, and SD
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Model term significance (ANOVA) and percentage contribution to total variance explained by the model

T: p = 0.001; 11.05% T: p = 0.008; 3.58%

S: p = 0.001; 20.65% S: p=0.001;5.01%

p-values a,‘lr)‘d percent DO: p=0.015;4.11% DO: p =0.760; n/a
contribution Fl: p = 0.015; 5.64% Fl: p = 0.034; 2.61%
SD: p = 0.064; n/a. SD: p =0.001; 8.01%

RDA analysis showed that the first two axes explain 45% (unbiased variance) of the
total variance of species cell abundance data, and therefore, the major trends have been
captured by the model [39]. The triplot (Figure 5) shows the positive correlation of D.
acuminata cell abundance with fluorescence and dissolved oxygen, as well as the positive
correlations of P. reticulatum, P. rotundatum, D. acuta, and G. spinifera cell abundance with
temperature and salinity. However, the short gradients of P. rotundatum and P. reticula-
tum rather indicate that they were present at most sampling sites or were related to in-
termediate ecological conditions [39]. Lingulodinium polyedra cell abundance variations
had a weak positive correlation with dissolved oxygen.

1.0

0.5

RDA2

RDA1

Figure 5. RDA correlation triplot (scaling type 1—Ic scores —angles between vectors of response
variables and explanatory variables reflect linear correlation) between the environmental variables
and cell abundance data with fitted site scores. (T —temperature, S—salinity, F1—fluorescence,
DO—dissolved oxygen, SD —water transparency; D.acum. — Dinophysis acuminata,

D.acut. — Dinophysis acuta, Ph.rot.— Phalacroma rotundatum, G.spin.— Gonyaulax spinifera,
L.poly.—Lingulodinium polyedra, P.reti.— Protoceratium reticulatum). The green numbers represent
stations.

CCA analysis explained 36% of the total variance in toxins abundance data with the
first two axes explaining 32%. The relative abundance of PTX-1 were associated with mid
to high levels of FL and mid to low values of S, T and SD ; PTX-2 abundances were linked
to mid values of S, T, and SD and mid levels of FL; #17,18,19 were associated with mid to
high FL and low T, SD and S; #16 with environment with high S, SD and T, and low FL;
YTX, #15, e#45, #3, #6,7,8, #13 and PTX-13 with low S, T and SD and mid to low FL (Figure
6).
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Figure 6. CCA biplot—(scaling type 1—lc scores) —toxin variant concentration scores constrained
to environmental gradients (in situ environmental explanatory dataset, and toxin concentration
response matrix). T, temperature; S, salinity; Fl, fluorescence; DO, dissolved oxygen; SD, water
transparency. Toxin variant abbreviations are listed in Tables S6 and S7).

3. Discussion

The present study provides new high-resolution data regarding the presence and
distribution of toxic microalgal species and associated phycotoxins in the northwestern
Black Sea, combining molecular and morphological approaches for species identification
with phycotoxin analyses. The application of different methods increased the detection
power of toxic microalgae, and the integrated dataset allowed a better interpretation of
the results, considering the strengths and limits of both methods [40]. In addition, cor-
respondence between the occurrence of some species and related phycotoxins sheds light
on possible toxin producers. Furthermore, some environmental drivers were found to
have an effect on toxic plankton abundance and the distribution of toxin variants.

3.1. Pseudo-nitzschia and DA

Species of Pseudo-nitzschia are common members of the phytoplankton community
in the Black Sea, often proliferating to bloom outbreaks [41]. In the present study, blooms
of Pseudo-nitzschia spp. were observed at numerous stations, but no DA was detected in
the corresponding samples. Cells categorized into the Pseudo-nitzschia delicatissima group
were much more abundant than those of the P. seriata group, consistent with previous
reports in Bulgarian and Romanian waters [19]. Commonly, both groups comprise mul-
tiple species that frequently co-occur [42]. Presently, nine Pseudo-nitzschia species have
been reported in the Black Sea, with six of them generally reported as capable of DA
production [41]. In the current study, according to NGS results, three potentially toxic
species were discriminated, P. calliantha, P. delicatissima, and P. pungens, with the first one
being dominant within the samples, in agreement with previous studies in Bulgarian
coastal waters [43]. Pseudo-nitzschia calliantha is the only Pseudo-nitzschia species in the
Black Sea proven to be toxigenic, with a maximum DA cell quota of 0.95 pg cell [26],
which is comparable to strains from other regions [44]. Globally, both toxic and non-toxic
strains of the three detected Pseudo-nitzschia species have been documented [45]. The re-
lationships between DA production and environmental factors are complex and some-
times controversial [46]. Salinity is among the multiple factors that affect DA production,
and a significant decline in DA production has been registered at lower salinities (<20)
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both in natural populations [47] and laboratory cultures [48]. The Black Sea is the world’s
largest brackish water body, and the average salinities of water column during the sam-
pling campaign were between 16.6 and 18.7 (Supplementary Material Table 51). The low
salinity could be among the leading factors affecting the low levels of DA registered in
the Black Sea [24] and the lack of ASP events in that region. This hypothesis is supported
by the absence of DA in the brackish Baltic Sea, although numerous Pseudo-nitzschia spe-
cies have been registered there [49], sometimes forming blooms [50,51]. However, it is
unwise to draw general conclusions, considering that various factors (abiotic and biotic)
are reported to control the toxin production [44,45,52]. In addition, the absence of DA in
the planktonic samples of the current survey could also be attributed to the final phase of
the bloom and predominantly disintegrated Pseudo-nitzschia cells, and accordingly, the
release of cellular domoic acid into the water [53,54]. Nevertheless, earlier reports on
domoic acid measured in samples from the Black Sea provide confirmation of the poten-
tial of local Pseudo-nitzschia strains to produce this phycotoxin, and further investigations
are vital to elucidate the effects of different factors on their growth and toxicity at a re-
gional level.

3.2. Alexandrium, Gymnodinium catenatum, and PSP

DNA sequence data indicate the presence of several potential PSP-toxin-producing
species in the plankton samples of this survey: Alexandrium andersonii, A. ostenfeldii, A.
minutum, and Gymnodinium catenatum. In addition, more Alexandrium species remained
genetically unidentified due to the high similarity in the target region between two dif-
ferent toxic Alexandrium species. Our LM analyses could not identify Alexandrium at the
species level, as identification is tedious and requires careful dissection and/or fluores-
cence staining of thecal plates. Nevertheless, variability in cell morphology and size was
observed to be in line with molecular data, providing evidence for the co-occurrence of
several species (Supplementary Material Tables S2 and S3). In any case, no PSP toxins
were detected in the plankton samples. This may be due to low cell numbers and the
relatively high detection limit (LOD) of PSP toxins. The individual LODs of PSP toxins
are highly variable, and range from 4 ng NT~ for dcGTX-3 to 106 ng NT! for GTX-1
(Supplementary Material Table S5). This means that depending on the toxin composition
of a certain species, the LOD may vary by more than one order of magnitude. Assuming
a PSP toxin cell quota of 5 pg cell! and given an LOD of 5-100 ng NT-!, approximately
1000 to 20,000 cells NT-! would be necessary in order to detect PSP toxins in plankton
samples. The highest abundance of Alexandrium cells was 242,000 cell NT-! at station 18
(Supplementary Material Table S2), which is above the estimated detection threshold.
However, this estimation relies on some uncertainties, and, importantly, non-toxic A.
margalefii was also present in the samples. PSP toxins have been registered in the Black
Sea in farmed and wild mussels at low levels [25,30,33] in concomitant presence of Alex-
andrium cells; however, no PSTs were detected in the plankton samples [33]. Numerous
Alexandrium species have been reported in the Black Sea on the basis of morphological
[55] and molecular data [22,56], but high densities of Alexandrium spp. rarely occur in the
Black Sea, although occasional blooms of A. monilatum and A. ostenfeldii have been ob-
served [16,57]. It is worth noting that A. ostenfeldii form dense blooms and produce PSP
toxins in brackish areas of the Baltic Sea [58,59] and of the Netherlands [60], revealing the
toxigenic nature of strains adapted to low salinity.

The sequence signature of another potential PSP producer, Gymnodinium catenatum,
was detected in 12 samples, mainly along the Bulgarian coast. This species has been pre-
viously identified in the Black Sea on the basis of 185 rRNA gene sequencing in the water
column [56] and in sediment [22,61]. The species is considered to have been introduced
after the year 2000 [62]. However, no strains or morphological confirmation of its pres-
ence, or any toxinological data of Black Sea populations, are available, which might be
due to general difficulties in the identification of species of Gymmnodinium, and thus there
is limited information on its distribution and abundance.
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3.3. Dinophysis, Phalacroma rotundatum, and OA/DTX/PTX Distribution

The genus Dinophysis was identified in all samples in this study, with D. acuta and D.
acuminata being dominant. In addition, P. rotundatum was found at most of the studied
areas. Among the DSTs, only PTXs were detected and quantified at all sampling stations.
PTX-2 was the major toxin, reaching levels much higher (up to 206 ng NT-! in the 20-50
um size fraction and up to 426 ng NT! in the 50-200 um size fraction) than previously
reported in plankton samples from the Bulgarian coast (0.862 ng PTX-2 NT-") [24], and
also from other basins (26 ng NT-' in Ambon Bay, Indonesia [63]; 43 ng NT-! in South-
eastern Pacific fjords [64]). PTX-2 and PTX-2sa also dominated in farmed mussels from
Russian waters, with a corresponding presence of D. caudata and P. rotundatum, while
okadaic acid (OA) and the related congener (DTX-1) were below the level of quantifica-
tion [28]. No correlation between P. rotundatum cell abundance and PTXs was observed in
the current study; this is in accordance with recent data indicating that this heterotrophic
species may be toxin vector but not a de novo toxin producer [65]. It has been reported
that the toxin profile of Dinophysis spp. is strain/region-specific [66]. PTX-2 is the domi-
nant toxin related to D. acuminata, D. acuta, D. caudata, and D. sacculus from different lo-
cations [67-74]. In the current investigation, PTX-2 levels were positively correlated with
D. acuta cell abundance for both fractions (20-50 pum, weak correlation; 50-200 pm,
moderate correlation). In addition, D. acuta was also correlated (moderately for both
fractions) with PTX-1 and PTX-13, toxins that have not been reported previously in the
Black Sea. Globally, there are fewer records of PTX-1 and PTX-13 in plankton samples
compared to PTX-2. PTX-1 was reported for the first time in plankton samples of the
North Sea (at levels comparable with those quantified in the Black Sea), correlated with
D. acuminata cell abundance [75], whereas PTX-13 was first isolated from extracts of D.
acuta from New Zealand [76]. Despite the observed association between PTXs and D.
acuta, it is difficult to confidently determine whether this was the only source of toxins,
considering the weak to moderate correlation. The cell size range (Supplementary Mate-
rial Table S2) suggests that most of the cells should be retained in the larger fraction (50—
200 pm). Furthermore, the data indicate that all identified Dinophysis species potentially
produce PTXs, and that there is high variability in the toxin cell quota of Dinophysis
strains and/or species [66].

Dinophysis spp. commonly occur in the Black Sea phytoplankton community under a
wide temperature and salinity range, not usually reaching high abundance [77-79].
Nevertheless, DSTs are so potent that they may cause harm even at low cell densities [80].
Globally, Dinophysis bloom initiation and toxin production were associated with various
environmental parameters, e.g., stratification, temperature, salinity, irradiance,
upwelling, nutrients, or dissolved oxygen [63,81-84]. Vershinin and Kamnev [27] sug-
gested a positive correlation between water temperature and Dinophysis development
and consequent DSP cases in the Black Sea. Similarly, Peteva et al. [24] also reported an
increase in Dinophysis cell abundance and PTXs with increasing spring temperatures; on
the other hand, no pectenotoxins were detected in summer [25]. Consistently, in the
current research, D. acuta cell abundance was related to temperature (Figure 5). Pec-
tenotoxins were associated with mid to low values of T (Figure 6), in agreement with
laboratory studies showing an influence of temperature on the cellular production of
PTX-2, and higher cellular content of PTX-2 at lower temperatures [85].

Pectenotoxins were quantified in plankton samples at all sampling stations; how-
ever, they have very low oral toxicity and pose negligible risk to humans [86]. In addi-
tion, the reported levels of DSTs in mussel samples from the Black Sea were far below the
regulatory limit [24,25]. Therefore, the risk of significant DSP toxin outbreaks in the
northwestern Black Sea is low, as also reported by other authors [87].
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3.4. Protoceratium reticulatum, Lingulodinium polyedra, Gonyaulax spinifera, and YTX Profiles

The potential YTX-producing species Protoceratium reticulatum, Lingulodinium poly-
edra, and Gonyaulax spinifera, detected in most of the samples in the current study, are
common components of the plankton community along the Bulgarian Black Sea, alt-
hough not reaching high abundances [79]. Yessotoxins were quantified at many stations,
and numerous YTX variants were reported for the first time for the Black Sea. YTX was
the major toxin variant, but was detected at levels much lower (up to 40 ng NT-') than
those reported in San Jorge Gulf, Argentina (8040 ng NT') [88]. Yessotoxins, tentatively
related to Lingulodinium polyedra and Gonyaulax spinifera, have been detected earlier from
Black Sea mussel samples [24,25,29,87], but toxins have not been found in plankton [24].
Strong relationships were found between Lingulodinium polyedra cell numbers and all of
the detected YTX variants (except #17/18/19). Protoceratium reticulatum was moderately
associated with YTX, which has been reported as the major toxin of the species [89],
whereas G. spinifera showed no correlation with any YTX variant. Correlations were
found mainly for the 20-50 um size fraction, in accordance with the cell size of both spe-
cies (Supplementary Material Table S2). Various strains from different regions of L. pol-
yedra and P. reticulatum showed high variability in YTX levels and toxin profiles, which
may also dependent on environmental factors [90-95]. In the current study, YTX variants
showed distinct relationships with environmental variables (temperatures, salinity, wa-
ter transparency, and fluorescence) (Figure 6), suggesting an effect on the toxin profile in
the Black Sea. For example, some of the YITX analogues were associated with salinity, in
accordance with studies in the Skagerrak coast of Sweden, where change in proportion of
the yessotoxin analogues with decreasing salinity was reported, and a positive correla-
tion between cellular toxin content of L. polyedra and salinity was observed [94].

The low levels of YTXs in plankton and previously measured in mussel samples
[24,25,87], and the reported low oral toxicity of YTX analogues [96,97], suggest a negligi-
ble risk of acute intoxication in the western part of the Black Sea. On the other hand, the
persistent presence of yessotoxins could result in chronic exposure from shellfish con-
sumption, which might pose a threat to human health [98].

3.5. Amphidomataceae and AZA

Among the members of the marine dinoflagellate family Amphidomataceae, some
species of Azadinium and Amphidoma languida produce azaspiracids [99-101]. In the pre-
sent study, Amphidoma languida was the only toxic member of the family registered in the
NGS results, represented with few sequences at just three stations. In addition,
non-toxigenic Azadinium trinitatum was detected at one station (data not shown). gPCR
analysis also confirmed the presence of Amphidomataceae in some samples (11 stations),
but the targeted toxic species Azadinium spinosum, Azadinium poporum, and Amphidoma
languida were not detected. There was an agreement for detecting Amphidomataceae by
both methods for three stations, whereas the other stations differed. The observed dis-
crepancy could be mainly attributed to the different sampling approaches used for the
two methods (plankton net sample for NGS vs. CTD water sample for qPCR). Consid-
ering the small cell size (<20 um) of most Amphidomataceae species [101], net samples
(mesh size 20 um) in general might not be well suited for targeted studies on this group
of microalgae. However, the net haul over ~ 20 m covered a relatively large range of the
water column. In contrast, species-specific qPCR analysis of selected sampling depths
indicated the lack of toxic Amphidomataceae species, which is in accordance with the
lack of azaspiracids in CTD samples. A relatively low number of OTUs in NGS analysis,
together with the lack of signals in qPCR and AZA analysis, as well as no observation by
microscopy reveal rather background abundances of toxigenic Amphidomataceae in the
samples. Overall, the data shown here represent first results, and further studies with a
focus on these relatively small-sized species and their toxins are needed to fully evaluate
the biogeography of Amphidomataceae in the Black Sea.
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3.6. Karlodinium veneficum and KmTx

The small marine dinoflagellate Karlodinium veneficum has been known as a notori-
ous producer of karlotoxins (KmTx) [102-104] with an increasingly high number of
KmTx variants. However, in contrast to AZA, which have a low LOD, KmmTx are not de-
tected with high sensitivity, and have an average LOD of 200 pg L. Considering that
Mediterranean strains of K. veneficum have an individual KmTx cell quota of 200 fg cell
[104], KmTx theoretically should be detectable above a threshold of approximately
100,000 K. veneficum cells L based on a water sample of 2 L. According to NGS data
(Supplementary Material Table S3), K. veneficum was among the dominant potentially
toxic dinoflagellate species present during this survey. However, metabarcoding only
provides data in terms of relative abundance, and the number of sequences cannot be
directly used as a proxy for actual cell abundance [105,106]. Unfortunately, the difficult
morphological identification of Karlodinium, even at the genus level, under LM in a for-
malin-fixed sample also did not allow the quantitative assessment of this group of or-
ganisms in the samples. Regardless, no KmTx was detected at any station. There are
several explanations for this: On one hand, there are reports of Mediterranean strains of
K. veneficum with lower KmTx cell quotas than 200 fg cell [104]. On the other hand, a
high degree of toxin variation has been observed in different ecotypes among strains
[102,103], and the chemical variability of KmTx is not yet fully explored. It may very well
be the case that yet unknown KmTx might be produced by Black Sea K. veneficum popu-
lations that would not have been detected by the targeted LC-MS/MS approach used in
this study. An important issue is the lower variability of the 185 rRNA region, and the
limited SSU rDNA sequence data for different Karlodinium species in GenBank, which
may lead to molecular misidentification considering that, until now, K. veneficum was
reported in the Black Sea based only on 185 rRNA gene metabarcoding [21,56]. Further
studies are necessary for elucidating the taxonomic identity of Karlodinium species in the
Black Sea and whether it is capable of karlotoxin production.

3.7. Other Potentially Toxic Species Identified in the Study

Three other potentially toxic species were detected during the current survey.

Prorocentrum cordatum is a common species in the Black Sea, often proliferating to
bloom abundances in the past [19]. Model data have shown that there is a high risk of P.
cordatum mass outbreaks for about 16% of the whole Black Sea area [107]. Black Sea
strains of P. cordatum did not show toxic potential in situ [108], as well as in laboratory
conditions after the application of mouse bioassay [109].

Pheopolykrikos hartmannii was previously identified, sporadically, in plankton and
sediment samples from the Black Sea [21,40]. In the current study, it was detected in more
than half of the samples only with the molecular approach. No blooms have been re-
ported regionally, although bloom densities and ichthyotoxicity were documented in a
lagoonal brackish system [110].

Aureococcus anophagefferens is a picoplanktonic member of the Pelagophyceae that
causes harmful brown tides in estuarine waters [111]. It was identified earlier in the Black
Sea only via eDNA metabarcoding [56], and data on its distribution are very limited.

4. Conclusions

The integrated approach, applied in this study for the first time, allowed better in-
sight into the composition and distribution of toxic microalgal species and phycotoxins in
the Black Sea. Considering the methodological constrains of the individual methods, our
results highlight the significance of the combined data for a better understanding of the
current plankton—phycotoxin variability pattern in the NW Black Sea. Numerous toxic
microalgae and phycotoxins persistently occur in the western part of the Black Sea. PTX-1
and PTX-13, as well as some YTX variants, were recorded for the first time in the basin. A
positive correlation was found between the abundance of D. acuta and PTXs, and be-
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tween L. polyedra and P. reticulatum and YTXs. However, culture studies are required for
the elucidation of the exact toxin profiles of Black Sea strains. Application of more so-
phisticated morphological methods (e.g., SEM) and multiple DNA markers will increase
the identification power in decoding the microalgal diversity. In addition, the effect of the
environmental variables on the toxic microalgae and toxicity needs to be more thor-
oughly explored (covering more key factors, e.g., nutrients, pH) considering the observed
complex associations. The low levels of the identified phycotoxins and their low oral
toxicity does not exclude the threat of chronic toxic exposure.

5. Materials and Methods
5.1. Study Area and Sampling

Data were collected during the bio-optical oceanographic cruise (Project “BLACK
SEA COLOR”, Contract Ne 4000123951/18/NL/SC, Plan for European Cooperating States)
carried out from 15th May 2019 to 4th June 2019 aboard RV Akademik in the northwest-
ern Black Sea (Romanian and Bulgarian waters). In total, 41 stations were sampled (Fig-
ure 7; Supplementary Material Table S1). CTD profiles were recorded at each station us-
ing an SBE-911 CTD system outfitted with a fluorescence sensor. Water transparency was
measured in situ at each station using a Secchi disk. Parameters of seawater, i.e., tem-
perature (T), salinity (S), fluorescence (Fl), and dissolved oxygen (DO), from the CTD
readings were analyzed at each station for the surface (1 m), the bottom of the sampling
layer, and average for the sampled water column (Supplementary Material Table S1).
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Figure 7. Study area and sampling stations.
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5.2. Plankton Sampling

At each station, one vertical net tow was taken from the water column using a 20 um
plankton net (438-030, Hydro-Bios, Kiel, Germany). The depth of the hauls was fixed to
0-20 m, with the exception of some stations (Supplementary Material Table S1). The col-
lected net tow concentrates were adjusted to 1 L with filtered seawater. In total, 50 mL
aliquots were fixed with formaldehyde solution (4% final concentration), buffered to pH
8-8.2 with disodiumtetraborate for microscopic analyses, and for DNA (metabarcoding)
analysis, 150 mL aliquots were filtered under gentle vacuum (<0.2 bar) through 1 um
pore-size polycarbonate filters (Whatman, USA). The filters were immediately frozen and
stored in liquid nitrogen until further analysis. The remaining 800 mL of each net haul
concentrate were fractionated over a sieve array, consisting of 200 um, 50 pm, and 20 um
Nitex sieves. The three fractions were each transferred to a 50 mL centrifuge tube and
adjusted to 30 mL with filtered water. The contents of each tube were separated into two
aliquots for the analysis of lipophilic toxins (including domoic acid) as well as for the
analysis of the hydrophilic PSP toxins. Prior to aliquotation, homogenization of the
samples was ensured, and the rapidly sedimenting material was brought back into sus-
pension by shaking. Subsequently, the aliquots were centrifuged at 5289x g for 20 min
(PK130, JOUAN ltalia Srl, Rodano, MI, Italy) and the supernatant was decanted. In some
cases, after partial removal of supernatant, further centrifugation at 5289x g for 10 min
was necessary to pellet residual suspended solids from the remaining supernatant. After
decanting again, the pellets were resuspended and quantitatively transferred to a 2 mL
cryovial each. Samples were centrifuged one last time at 16,163x g for 15 min (Sigma 1-
14, Osterode, Germany), and the supernatants were removed and the pellets stored at —20
°C until analysis.

In addition to net tows, plankton samples were also collected at each station by
Niskin bottles at up to three different depths (Supplementary Material Table S4). From
each depth, three liters were pre-screened through a 20 pm Nitex sieve and subsequently
pooled. In duplicate, 0.6-4.0 L (depending on the particle content) of the mixture was
filtered under gentle vacuum (<200 mbar) through 3 um Whatman polycarbonate filters
(D 47 mm, GE Healthcare, Little Chalfont, UK). One filter was used for DNA extraction
and qPCR analyses, and the other filter was used for azaspiracid (AZA) analysis. The
filters for DNA were stored at -20 °C until extraction, whereas the still wet filters for AZA
analysis were attached to the inner wall of a 50 mL centrifuge tube. The filters were then
carefully rinsed with one mL methanol (99.4%, Marvin Ltd., Plovdiv, Bulgaria). The
methanol accumulating in the bottom tip of the tube was repeatedly used to rinse the
filter until complete decolorization. The methanol extract was transferred to a 2 mL cry-
ovial and stored at —20 °C until extraction.

5.3. Microscopy

Taxonomic identification and cell counts were done under inverted microscope
(Nikon Eclipse TE2000-U) connected to a video-interactive image analysis system
(L.U.C.I.A, Version 4.8, Laboratory Imaging Ltd., Prague, Czech Republic) at 400x mag-
nification in Sedgwick-Rafter counting chambers. A total of 400 cells were counted from
each sample, and rare and large species were checked in the whole counting chamber
[112]. Cell abundance was expressed as cells per net tow (cells NT-1). Taxonomic nomen-
clature was in accordance with the online database of World Register of Marine Species
(WoRMS) http://www.marinespecies.org/. accessed on 06 October 2021. Due to the im-
possible taxonomic identification at the species level under LM, Pseudo-nitzschia spp.
were separated into two groups on the basis of cell width: (1) seriata group (>3 um width)
and (2) delicatissima group (<3 um width) [113], whereas Alexandrium cells were pooled
as Alexandrium spp. The dimensions of at least 10 cells from each potentially toxic species
were measured for each sample. The QC/QA (quality assurance/quality control) of the
data was performed following the quality control guidelines for phytoplankton [114].
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5.4. DNA (metabarcoding) Analysis

The frozen filters were thawed and genomic DNA were extracted using a DNeasy
PowerWater Kit (QIAGEN) according to the manufacturer’s instructions. The DNA
samples were stored at -20 °C until further processing. For detection of eukaryotic spe-
cies, universal primers for the 185 rRNA gene V7-V9 variable region (185-V7F:
TGGAGYGATHTGTCTGGTTDATTCCG and 185-VO9R: TCACCTACGGAWACCTT-
GTTACG; modified from Tanabe et al. [115]) were used. The construction of paired-end
libraries and HTS on Illumina Miseq 300 PE platform (Illumina, USA) were performed by
Macrogen Inc. (Seoul, South Korea). One of the samples (st.14) failed in library construc-
tion, so finally, 40 samples in total were sequenced. The procedures and techniques, ap-
plicable to the treatment of the obtained sequences, selection, and taxonomic identifica-
tion of operational taxonomic units (OTUs), were administered according to the work-
flow described in Dzhembekova et al. [43] with the exception that sequences with length
>300 bp were truncated to 300 bp by trimming the 3’ tails. The trimmed sequences shorter
than 250 bp were filtered out. Taxonomic assignment was performed using BLAST
against a sequence database downloaded from GenBank. Sequences were clustered to
OTUs at 299.1% similarity level. When considering the taxonomic identification, a refer-
ence similarity threshold >99% was set for identification at the species level.
IOC-UNESCO Taxonomic Reference List of Harmful Micro Algae [116] was used as a
reference database of toxic microalgal species selection both for microscopy and NGS
data. For additional verification, representative sequences of all OTUs associated with
toxic species were also manually BLAST searched from the GenBank online database
[117]. DNA sequences for this study can be found in the DDB] Sequence Read Archive
under accession number DRA014629 (biosamples SAMDO00515557, SAMDO00515558,
SAMDO00515560, SAMDO00515561, SAMDO00515563, SAMD00515564, SAMD00515566—
SAMDO00515574, SAMDO00515576, SAMDO00515577, SAMDO00515579-SAMD00515586,
SAMDO00515588, SAMDO00515589, SAMDO00515592, SAMDO00515593, SAMDO00515596,
SAMDO00515598, SAMDO00515599, SAMDO00515602, SAMDO00515603, SAMDO00515606,
SAMD00515607, SAMD00515610, SAMD00515611, SAMDO00515615, SAMD00515616).

5.5. DNA Extraction and gPCR

Extraction of DNA from the filtered CTD samples was carried out by transferring
the filters to a glass petri dish (Brand, Wertheim, Germany) and adding 500 pL the SL1
lysis buffer, provided by the NucleoSpin Soil DNA extraction kit (Macherey & Nagel,
Diiren, Germany). The filtered material was scratched off the filters using cell scrapers
(16 cm, Sarstedt, Niimbrecht, Germany) and transferred with the buffer to the beat tubes
provided by the DNA extraction kit. The extraction was performed according to the
manufacturer’s instructions, with a slight modification. The beat tubes were not vortexed
but shaken in cell disrupter (FastPrep FP120, Thermo-Savant, Illkirch, France) for 45 s
initially and then for another 30 s, at a speed of 4.0 m s each. For final DNA elution, two
elution procedures with 50 uL of the provided buffer each (to a final elution volume of
100 uL) were carried out to maximize the overall DNA yield. DNA samples were stored
at —20 °C until further analysis.

DNA samples were screened by qPCR on the presence of Amphidomataceae. A
family-specific SYBR Green qPCR assay introduced by Smith et al. [118] was used to de-
tect overall amphidomatacean DNA in the samples. Reactions and cycler conditions were
set as described in Tillmann et al. [119]. All reactions were performed in duplicate per
sample, and runs contained positive controls (Az. poporum, strain UTH-D4; 1 ng L),
negative controls (Alexandrium spp.; 1 ng uL™), and non-template controls (NTC;
high-grade, nuclease-free water). Samples were considered as being positive, if at least
one of the replicates showed a fluorescence signal above the threshold before cycle 37.
Assay performance was also evaluated by melt curve analysis for every single reaction.
In addition, positive evaluated samples for amplification and melt temperature were
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subsequently run on an agarose gel (1%, 70 mV, 30 min) in TE buffer to verify correct
amplicon length (179 bp).

The positive amphidomatacean samples revealed by the SYBR Green assay were
quantitatively tested with the species-specific TagMan qPCR assays on AZA-producing
species Az. spinosum, Az. poporum and Am. languida [120,121], and were performed as
described in Wietkamp et al. [122]. DNA standard curves were included as 10-fold dilu-
tion series of target species DNA (10 ng uL! to 100 fg uL') from exponentially growing
cultures of Az. spinosum (strain 3D9), Az. poporum (strain UTH-D4) and Am. languida
(strain AND-0920).

The limit of detection (LOD) and limit of quantification (LOQ) were defined fol-
lowing Forootan et al. [123]. The LOD was assigned to the lowest standard curve con-
centration, for which all three replicates showed amplification, but values were outside
the 95% confidence interval of the standard curve. The LOQ was defined as the lowest
standard curve concentration, for which all three replicates showed amplification within
the 95% confidence interval. For the standard curves of all three qPCR assays on the field
samples, the standard curve resolution applied did not allow differentiation between
LOD and LOQ, which were both 0.1 pg uL-'. Taking the filter and extraction volume into
account, the LOD of 0.1 pg puL" in the species-specific assays corresponded to 1-6 cells L-!
filter volume.

5.6. Toxin Extraction

For the extraction of PSP and lipophilic toxins (including domoic acid), 400 uL 0.03
M acetic acid (p.a.,, Merck, Darmstadt, Germany) for PSP toxins and 400 uL methanol
(HPLC-grade, Merck) for lipophilic toxins were added to the respective cell pellets. To
each sample, 0.9 g of Lysing Matrix D (Thermo Savant, Illkirch, France) were added as
well. After sealing and vortexing the cryovials, cells were lysed by reciprocal shaking at
maximum speed (6.5 m s) for 45 s in a Bio 101 FastPrep device (Thermo Savant). Sub-
sequently, homogenates were centrifuged at 16,100x g and 10 °C for 5 min (5415R, Ep-
pendorf, Hamburg, Germany). The extracts were transferred to centrifugation filters with
a pore size of 0.45 um (Millipore Ultrafree, Eschborn, Germany) and centrifuged at
16,100x g and 10 °C for 1 min. The filtrates were finally transferred to high performance
liquid chromatography (HPLC) sample vials (2 mL, Agilent, Waldbronn, Germany) and
vials for PSP toxin analysis were sealed with rubber crimp caps (Agilent), while vials for
the analysis of lipophilic toxins were sealed with crimp caps (Agilent). If necessary, the
extract was transferred to a cone-shaped HPLC sample vial (Vial, crimp top, micro sam-
pling, Agilent Technologies) to increase the fill level. Samples were stored at —20 °C until
measurement.

The methanolic extracts of bottle sample water filters were completely evaporated in
a gentle stream of nitrogen. The dry samples were taken up in 300 uL acetone
(HPLC-grade, Merck) and vortexed for 30 s. The extracts were transferred to a centrifu-
gation filter with a pore size of 0.45 um and centrifuged at 16,100x g and 10 °C for 1 min.
The filtrates were finally transferred to a conical HPLC sample vial and sealed with a lid
with a silicone septum.

5.7. LC-FLD and LC-MS/MS Analysis

Liquid chromatography with post-column derivatization and fluorescence detection
(LC-FLD) was used for the determination of PSP toxins. The chromatograph (LC1100,
Agilent) consisted of a G1379A degasser, a G1311A quaternary pump, a G1329A au-
tosampler, a G1330B autosampler thermostat, a G1316A column thermostat, and a
G1321A fluorescence detector. The system was coupled to a post-column derivatization
unit (PCX 2500, Pickering Laboratories, Mountain View, CA, USA). Separation was per-
formed on a Luna C18 RP column (Phenomenex, Aschaffenburg, Germany) with a length
of 250 mm, an inner diameter of 4.6 mm and a particle diameter of 5 um. A Phenomenex
SecuriGuard was used as the precolumn. Instrumental details are given in supplemen-
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tary information (Supplementary Material Tables S8 and S9). Data acquisition and pro-
cessing was performed by the HP ChemStation software (Agilent). A PSP mixed stand-
ard was used to identify and quantify the toxins, which contained the following compo-
nents: saxitoxin (S5TX), neosaxitoxin (NEO), decarbamoyl-saxitoxin (dcSTX), gonyautox-
ins 1-4 (GTX-1 to -4), decarbamoyl-gonyautoxin-2/3 (dcGTX2/3, B1 and C1/2). These in-
dividual standards were obtained from the Certified Reference Materials Programme of
the Institute of Marine Biology, Halifax, NS, Canada.

For the measurement of lipophilic toxins, including domoic acid, ultraperformance
liquid chromatography (UPLC®) coupled with tandem quadrupole mass spectrometry
(LC-MS/MS) was used. The UPLC system included a column oven, an autosampler and a
binary pump (AQUITY I UPLC Class, Waters, Eschborn, Germany). The separation was
carried out on a RP-18 column (Purospher®STAR endcapped (2 um) Hibar® HR 50-2.1
UPLC, Merck) equipped with a precolumn (0.5 pm, OPTSSOLV® EXP™, Sigma-Aldrich,
Hamburg, Germany). This system was coupled to a triple quadrupole mass spectrometer
(Xevo® TQ-XS, Waters). Data were acquired and analyzed with Masslynx (version 4.2,
Waters). To uniquely identify the toxins, in addition to the mass transitions defined in the
selected reaction monitoring (SRM) mode, the retention times of the toxins of the stand-
ards were compared with those in the samples. For quantification, an evaluation method
was used which contained the specific transitions and default settings, except for the
smoothing function, which was turned off. In some cases, enhanced production spectra
were recorded. These were used for the identification of known substances by comparing
the recorded characteristic fragmentation patterns with those in the literature. The vari-
ous eluents and gradients used for the different toxin analyses are described in supple-
mentary information (Supplementary Material Tables S10-515). Certified standard solu-
tions were used to identify and quantify toxins. These were gymnodimine A (GYM-A),
13-desmethylspirolide C (SPX-1), okadaic acid (OA), dinophysistoxin-1, and -2 (DTX-1,
DTX-2), pectenotoxin 2 (PTX-2), yessotoxin (YTX), domoic acid (DA), and azaspiracid 1
(AZA-1). GYM-A, SPX-1, OA, and PTX-2, like the PSP standards, were obtained from the
Institute of Marine Biology from Canada, while DTX-1, DTX-2, YTX, DA, and AZA-1
were obtained from the Laboratorio CIFGA S.A., Lugo, Spain. In addition, a goniodomin
A (GD-A) standard was used, which was obtained from A. Andersen [124] and a KmTx-2
standard provided by A. Place [104].

5.8. Statistical Analysis

Spearman rank correlation was used to identify statistically significant species as-
sociations with toxin abundance by fractions. Detrended canonical analysis (DCA) was
utilized for estimation of the gradient lengths to justify feasibility of linear or unimodal
constrained ordination methods. Redundancy analysis (RDA) was applied on species
data and canonical correspondence analysis (CCA) to toxin data, constraining species cell
and toxin abundances by selected abiotic and biotic variables. The variance inflection
factors (VIF) of the variables were used as a test for multicollinearity of data to avoid er-
roneous model interpretations. Analysis of variance (ANOVA) was used for the assess-
ment of the RDA and CCA models’ statistical significance, RDA and CCA axes and
models’ terms (explanatory variables) significance (a = 0.05). The above listed analyses
and graphical representations were performed in Matlab [125] and R environment using
the statistics and programming software R 4.1.2 [126], packages ‘hmisc’ [127] and ‘vegan’
[128], available through the CRAN repository [129].

5.9. Data Used for Statistical Analyses

Environmental parameters selected for analyses were taken as an average values
over the same depth as the net tows plankton and toxin samples at each station for tem-
perature (T), salinity (S), fluorescence (Fl), dissolved oxygen (DO) from the CTD read-
ings, and water transparency (SD) (Supplementary Material Table S1). The fluorescence
data used were expressed as relative values (mg m=) not calibrated against chl a meas-
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urement. Cell abundance data only represent species classified as producers of detected
toxins. Abundance and toxin data, along with the respective cumulative abundances of
toxin variants (integrated values of fractions 20-50 um and 50-200 um) used for RDA
and CCA, were gathered at all 41 sampling sites.

Supplementary Materials: The following supporting information can be downloaded at:
www.mdpi.com/article/10.3390/toxins14100685/s1. Table S1: Metadata and parameters of the sam-
pling stations; Table S2: Potentially toxic microalgal species identified in the samples by LM; Table
S3: Potentially toxic microalgal species identified in the samples by NGS; Table S4: Sampling sta-
tions, filtrated volume for DNA extraction, and qPCR data; Table S5: Calculated LODs for the in-
vestigated toxin standards; Table S6: Toxin contents (pg NT™) of the 20-50 um size fractions of 20
m vertical net tows; Table S7: Toxin contents (pg NT™) of the 50-200 um size fractions of 20 m ver-
tical net tows; Table S8: Mobile phases and gradients used for LC-FLD measurements; Table S9:
Chromatographic settings for LC-FLD; Table S10: Mobile phases and gradients used for various
LC-MS/MS measurements; Table S11: Mass spectrometer and chromatographic settings for all
LC-MS/MS measurements; Table S12: Investigated lipophilic toxins and domoic acid, including
associated quantification and qualification transitions; Table S13: Investigated azaspiracids, in-
cluding associated quantification and qualification transitions; Table S14: Investigated karlotoxins,
including associated quantification and qualification transitions; Table S15: Investigated yessotox-
ins, including associated quantification transitions. References [37,38,130] are cited in the supple-
mentary materials
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