GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Language
  • 11
    Publication Date: 2019-01-29
    Description: Rapid declines in Arctic sea ice have captured attention and pose significant challenges to a variety of stakeholders. There is a rising demand for Arctic sea ice prediction at daily to seasonal time scales, which is partly a sea ice initial condition problem. Thus, a multivariate data assimilation that integrates sea ice observations to generate realistic and skillful model initialization is needed to improve predictive skill of Arctic sea ice. Sea ice data assimilation is a relatively new research area. In this review paper, we focus on two challenges for implementing multivariate data assimilation systems for sea ice forecast. First, to address the challenge of limited spatiotemporal coverage and large uncertainties of observations, we discuss sea ice parameters derived from satellite remote sensing that (1) have been utilized for improved model initialization, including concentration, thickness and drift, and (2) are currently under development with the potential for enhancing the predictability of Arctic sea ice, including melt ponds and sea ice leads. Second, to strive to generate the “best” estimate of sea ice initial conditions by combining model simulations/forecasts and observations, we review capabilities and limitations of different data assimilation techniques that have been developed and used to assimilate observed sea ice parameters in dynamical models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-04-15
    Description: The snow/sea-ice albedo was measured over coastal landfast sea ice in Prydz Bay, East Antarctica (off Zhongshan Station) during the austral spring and summer of 2010 and 2011. The variation of the observed albedo was a combination of a gradual seasonal transition from spring to summer and abrupt changes resulting from synoptic events, including snowfall, blowing snow, and overcast skies. The measured albedo ranged from 0.94 over thick fresh snow to 0.36 over melting sea ice. It was found that snow thickness was the most important factor influencing the albedo variation, while synoptic events and overcast skies could increase the albedo by about 0.18 and 0.06, respectively. The in-situ measured albedo and related physical parameters (e.g., snow thickness, ice thickness, surface temperature, and air temperature) were then used to evaluate four different snow/ice albedo parameterizations used in a variety of climate models. The parameterized albedos showed substantial discrepancies compared to the observed albedo, particularly during the summer melt period, even though more complex parameterizations yielded more realistic variations than simple ones. A modified parameterization was developed, which further considered synoptic events, cloud cover, and the local landfast sea-ice surface characteristics. The resulting parameterized albedo showed very good agreement with the observed albedo.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-05-19
    Description: A 3-D Finite-Volume Coastal Ocean Model was applied in the Bohai Sea, especially near the Yellow River estuary, to simulate the tides, tidal currents, residual currents and shear fronts, using unstructured triangular grids. In the case of an accurate simulation of the tides and tidal currents in the Bohai Sea, this article focuses on the Yellow River mouth. The type of tides is irregular semi-diurnal and the type of tidal currents is the reciprocating flow, mostly parallel to the coastline. The tide induced eulerian residual currents are a couple of eddies on each side of the river mouth, with the anticlockwise on the left side and clockwise on the other side, and both of the eddies are enhanced by the Yellow River runoff. Two patterns of shear fronts are identified at the conversion between the flood and ebb tidal phase. The results suggest that the shear fronts be generated in the shallow water because the tidal phase of the coastal area is ahead of the deeper seaward area, then moves seaward and finally disappears 1-2 hours later.
    Description: Published
    Keywords: Huanghe (Yellow River) mouth ; Tides ; Tidal currents ; Shear fronts ; Residual currents ; Numerical simulation
    Repository Name: AquaDocs
    Type: Journal Contribution , Not Known
    Format: pp.1-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Neural Circuits 7 (2013): 160, doi:10.3389/fncir.2013.00160.
    Description: Here we characterize several new lines of transgenic mice useful for optogenetic analysis of brain circuit function. These mice express optogenetic probes, such as enhanced halorhodopsin or several different versions of channelrhodopsins, behind various neuron-specific promoters. These mice permit photoinhibition or photostimulation both in vitro and in vivo. Our results also reveal the important influence of fluorescent tags on optogenetic probe expression and function in transgenic mice.
    Description: This work was supported by a CRP grant from the National Research Foundation of Singapore and by the World Class Institute (WCI )Program of the National Research Foundation of Korea (NRF )funded by the Ministry of Education, Science and Technology of Korea (MEST) (NRF Grant Number: WCI2009-003).
    Keywords: Optogenetics ; Channelrhodopsin ; Photostimulation ; Photoinhibition ; Cerebellum ; Cortex ; Hippocampus ; Pons
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 418-434, doi:10.1175/2007JPO3372.1.
    Description: Stratification and turbulent mixing exhibit a flood–ebb tidal asymmetry in estuaries and continental shelf regions affected by horizontal density gradients. The authors use a large-eddy simulation (LES) model to investigate the penetration of a tidally driven bottom boundary layer into stratified water in the presence of a horizontal density gradient. Turbulence in the bottom boundary layer is driven by bottom stress during flood tides, with low-gradient (Ri) and flux (Rf) Richardson numbers, but by localized shear during ebb tides, with Ri = ¼ and Rf = 0.2 in the upper half of the boundary layer. If the water column is unstratified initially, the LES model reproduces periodic stratification associated with tidal straining. The model results show that the energetics criterion based on the competition between tidal straining and tidal stirring provides a good prediction for the onset of periodic stratification, but the tidally averaged horizontal Richardson number Rix has a threshold value of about 0.2, which is lower than the 3 suggested in a recent study. Although the tidal straining leads to negative buoyancy flux on flood tides, the authors find that for typical values of the horizontal density gradient and tidal currents in estuaries and shelf regions, buoyancy production is much smaller than shear production in generating turbulent kinetic energy.
    Description: This work is supported by Grants OCE-0451699 and OCE-0451740 from the National Science Foundation.
    Keywords: Tides ; Mixing ; Large eddy simulations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 1789-1797, doi:10.1175/JPO-D-16-0240.1.
    Description: Internal solitary waves are commonly observed in the coastal ocean where they are known to contribute to mass transport and turbulent mixing. While these waves are often generated by cross-isobath barotropic tidal currents, novel observations are presented suggesting that internal solitary waves result from along-isobath tidal flows over channel-shoal bathymetry. Mooring and ship-based velocity, temperature, and salinity data were collected over a cross-channel section in a stratified estuary. The data show that Ekman forcing on along-channel tidal currents drives lateral circulation, which interacts with the stratified water over the deep channel to generate a supercritical mode-2 internal lee wave. This lee wave propagates onto the shallow shoal and evolves into a group of internal solitary waves of elevation due to nonlinear steepening. These observations highlight the potential importance of three-dimensionality on the conversion of tidal flow to internal waves in the rotating ocean.
    Description: National Science Foundation (OCE-1061609)
    Description: 2018-01-03
    Keywords: Estuaries ; Internal waves ; Solitary waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-10-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(11), (2020): e2019JC015851, doi:10.1029/2019JC015851.
    Description: Influences of the ocean mixed layer (OML) dynamics on intensity, pathway, and landfall of October 2012 Hurricane Sandy were examined through an experiment using the Weather Research and Forecasting (WRF) model. The WRF model was run for two cases with or without coupling to the OML. The OML in the WRF was calculated by an oceanic mixed layer submodel. The initial conditions of the depth and mean water temperature of the OML were specified using Global‐FVCOM and Global‐HYCOM fields. The comparison results between these two cases clearly show that including the OML dynamics enhanced the contribution of vertical mixing to the air‐sea heat flux. When the hurricane moved toward the coast, the local OML rapidly deepened with an increase of storm wind. Intense vertical mixing brought cold water in the deep ocean toward the surface to produce a cold wake underneath the storm, with the lowest sea temperature at the maximum wind zone. This process led to a significant latent heat loss from the ocean within the storm and hence rapid drops of the air temperature and vapor mixing ratio above the sea surface. As a result, the storm was intensified as the central sea level pressure dropped. Improving air pressure simulation with OML tended to reduce the storm size and strengthened the storm intensity and hence provided a better simulation of hurricane pathway and landfall.
    Description: This work was supported by the MIT Sea Grant College Program through grant 2017‐R/RCM‐49C and 2012‐R/RC‐127, the NSF grants OCE1459096, OCE1332207, and OCE1332666, the NOAA‐funded IOOS NERACOOS program for NECOFS with subcontract numbers NA16NOS0120023 and NERACOOS A002 and A007, and the NOAA‐CINAR Hurricane Sandy fund. The development of the Global‐FVCOM system has been supported by NSF grants OCE1603000. S. Li was supported partially by the oversea Ph.D. fellowship from the China Scholarship Council (No. 1409010025).
    Description: 2021-04-07
    Keywords: Mixed layer ; Numerical model ; Hurricane ; FVCOM ; WRF
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 115 (2010): C08003, doi:10.1029/2009JC005702.
    Description: The estuarine boundary layer affected by a horizontal density gradient exhibits temporal evolution over a tidal cycle, in a manner similar to the diurnal cycle of the ocean surface mixed layer. A large eddy simulation (LES) model is developed to investigate the physics controlling the growth of the boundary layer during the flood tide and restratification during the ebb tide. Turbulent kinetic energy, momentum and salt fluxes, bottom stress, and energy dissipation rates calculated from the LES model all show a strong flood-ebb asymmetry. Analysis of the turbulent kinetic energy (TKE) budget shows a primary balance between shear production and dissipation in the well-mixed boundary layer over the tidal cycle. However, TKE transport term is found to be important across the edge of the boundary layer during the flood tide so turbulent energy generated in the bottom boundary layer can be transferred to the stratified pycnocline region. Tidal straining leads to a small and weakly convective region inside the boundary layer during the flood tide but the strain-induced buoyancy flux does not make a significant contribution to the turbulence generation. Additional LES runs are conducted by switching off the baroclinic pressure gradient term in the momentum equation and the tidal straining term in the salinity equation to show that the baroclinic pressure gradient is the main mechanism responsible for generating the flood-ebb mixing asymmetry.
    Description: This work is supported by grants OCE-0451699 (M.L.), OCE-0452380 (U.P. and S.R.), and OCE-0451740 (W.R.G.) from the National Science Foundation.
    Keywords: Estuarine mixing ; Large Eddy Simulations ; Tidal straining
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 13 (2016): 2011-2028, doi:10.5194/bg-13-2011-2016.
    Description: As three-dimensional (3-D) aquatic ecosystem models are used more frequently for operational water quality forecasts and ecological management decisions, it is important to understand the relative strengths and limitations of existing 3-D models of varying spatial resolution and biogeochemical complexity. To this end, 2-year simulations of the Chesapeake Bay from eight hydrodynamic-oxygen models have been statistically compared to each other and to historical monitoring data. Results show that although models have difficulty resolving the variables typically thought to be the main drivers of dissolved oxygen variability (stratification, nutrients, and chlorophyll), all eight models have significant skill in reproducing the mean and seasonal variability of dissolved oxygen. In addition, models with constant net respiration rates independent of nutrient supply and temperature reproduced observed dissolved oxygen concentrations about as well as much more complex, nutrient-dependent biogeochemical models. This finding has significant ramifications for short-term hypoxia forecasts in the Chesapeake Bay, which may be possible with very simple oxygen parameterizations, in contrast to the more complex full biogeochemical models required for scenario-based forecasting. However, models have difficulty simulating correct density and oxygen mixed layer depths, which are important ecologically in terms of habitat compression. Observations indicate a much stronger correlation between the depths of the top of the pycnocline and oxycline than between their maximum vertical gradients, highlighting the importance of the mixing depth in defining the region of aerobic habitat in the Chesapeake Bay when low-oxygen bottom waters are present. Improvement in hypoxia simulations will thus depend more on the ability of models to reproduce the correct mean and variability of the depth of the physically driven surface mixed layer than the precise magnitude of the vertical density gradient.
    Description: This work was supported by the NOAA IOOS program as part of the Coastal Ocean Modeling Testbed.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 60 (1995), S. 7293-7297 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...