GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Yang, Jun; Ding, Feng; Ramirez, Ramses M; Peltier, W R; Hu, Yongyun; Liu, Yonggang (2017): Abrupt climate transition of icy worlds from snowball to moist or runaway greenhouse. Nature Geoscience, 10(8), 556-560, https://doi.org/10.1038/ngeo2994
    Publication Date: 2023-01-13
    Description: Ongoing and future space missions aim to identify potentially habitable planets in our Solar System and beyond. Planetary habitability is determined not only by a planet's current stellar insolation and atmospheric properties, but also by the evolutionary history of its climate. It has been suggested that icy planets and moons become habitable after their initial ice shield melts as their host stars brighten. Here we show from global climate model simulations that a habitable state is not achieved in the climatic evolution of those icy planets and moons that possess an inactive carbonate-silicate cycle and low concentrations of greenhouse gases. Examples for such planetary bodies are the icy moons Europa and Enceladus, and certain icy exoplanets orbiting G and F stars. We find that the stellar fluxes that are required to overcome a planet's initial snowball state are so large that they lead to significant water loss and preclude a habitable planet. Specifically, they exceed the moist greenhouse limit, at which water vapour accumulates at high altitudes where it can readily escape, or the runaway greenhouse limit, at which the strength of the greenhouse increases until the oceans boil away. We suggest that some icy planetary bodies may transit directly to a moist or runaway greenhouse without passing through a habitable Earth-like state.
    Keywords: File content; File format; File name; File size; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 420 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-01-29
    Description: Rapid declines in Arctic sea ice have captured attention and pose significant challenges to a variety of stakeholders. There is a rising demand for Arctic sea ice prediction at daily to seasonal time scales, which is partly a sea ice initial condition problem. Thus, a multivariate data assimilation that integrates sea ice observations to generate realistic and skillful model initialization is needed to improve predictive skill of Arctic sea ice. Sea ice data assimilation is a relatively new research area. In this review paper, we focus on two challenges for implementing multivariate data assimilation systems for sea ice forecast. First, to address the challenge of limited spatiotemporal coverage and large uncertainties of observations, we discuss sea ice parameters derived from satellite remote sensing that (1) have been utilized for improved model initialization, including concentration, thickness and drift, and (2) are currently under development with the potential for enhancing the predictability of Arctic sea ice, including melt ponds and sea ice leads. Second, to strive to generate the “best” estimate of sea ice initial conditions by combining model simulations/forecasts and observations, we review capabilities and limitations of different data assimilation techniques that have been developed and used to assimilate observed sea ice parameters in dynamical models.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: In this study three prominent features of ocean surface turbulent heat fluxes (THF) trends during 1958-2013 are identifeed based on the Objectively Analyzed air-sea Fluxes (OAFlux). The associated ocean-atmosphere dynamics changes are investigated based on data of the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR). First, the THF are enhanced over the mid-latitude expansions of the subtropical western boundary currents (WBCs). An intensified oceanic heat transport, forced by stronger near-surface zonal wind, is likely to be the cause of such THF tendency. Second, the THF are reduced over the tropical eastern Pacific Ocean, which is primarily caused by the decreasing near-surface wind speed and sea surface temperature (SST), associated with a local coupled ocean-atmosphere cooling mode. Finally, the THF are reduced over the northern tropical Atlantic Ocean, which is attributed to the decreasing air-sea humidity and temperature differences as a result of the convergence of near-surface air and the divergence of ocean currents (upwelling).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Highlights • Closure of the Tethyan Seaway led to precipitation increase in South Asia but decrease in North Africa. • Closure of the Tethyan Seaway led to enhanced moisture transport from North Africa to South Asia. • Global cooling led to precipitation decrease in North Africa and South Asia during the MMCT. Abstract The Middle Miocene was a period of prominent climatic change, marked by the Mid-Miocene Climatic Optimum (MMCO) and the subsequent global cooling due to a decline of the atmospheric CO2 concentrations (pCO2). In addition to this, the closure of the Tethyan Seaway driven by the Arab-Eurasia collision also had an important effect on the paleoclimatic changes during this period. In this study, we use the Community Earth System Model 1.2.2 (CESM 1.2.2) to simulate the effects of global cooling (i.e. pCO2 decline) and the closure of the Tethyan Seaway on the North African and South Asian climates. Our results show that the global cooling led to a precipitation decrease over both North Africa and South Asia, whereas the closure of the Tethyan Seaway resulted in a precipitation decrease over North Africa but an increase over South Asia. The opposite effects over North Africa and South Asia are due to an increased moisture transport from North Africa to South Asia induced by stronger summer atmospheric circulation when the Tethyan Seaway is closed. We further show that the reconstructed records of drying conditions over North Africa during the warming period from the late Early Miocene to the early Middle Miocene from previous studies can be partly explained by the narrowing of the Tethyan Seaway and its climatic continuing deterioration due to the subsequent final closure and global cooling. Both are precursory conditions for the formation of the Sahara desert. The stronger South Asian monsoon during the Middle Miocene transient cooling period found in previous studies can be partially attributed to the final closure of the Tethyan Seaway.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: During the Cretaceous, there were two factors that had important influences on the East Asian climate, the East Asian coastal mountains and Earth's orbital cycling. An important question is how the coastal mountains modulated the variability of East Asian climate over orbital timescales. Here, we perform simulations with the coastal mountains of 0, 2, and 4 km high and three orbital configurations to answer the question. Our results show that a mountain range at the East Asian coast can amplify the impacts of orbital forcing on East Asian climate. Specifically, precipitation over the Songliao Basin in Northeastern China has significant changes as the coastal mountain range is about 4 km high. Combining our simulation results with orbitally‐controlled sedimentary deposits from the Songliao Basin, we conclude that the altitude of the coastal mountain range was very likely higher than 2 km in the Late Cretaceous. Plain Language Summary Tectonic events and solar insolation are the two important factors impacting variations of the climate system in the geological past. Regional climate responses to variations in the radiation from the sun over 10 4 –10 5 years were often magnified or dampened by tectonic events. Cretaceous sedimentary records in East Asia suggest that East Asian climate was influenced by the solar insolation. Geological evidence showed that a mountain range existed along the East Asian coast then. Would this mountain range modulate impacts of solar insolation on East Asian climate? Our modeling results show that the influence of solar insolation on East Asian climate can be amplified by the coastal mountain range, depending on the mountain elevation. When the coastal mountain range is ∼2 km high, the amplification effects become significant. When its altitude reaches ∼4 km, the response of East Asian climate to solar insolation is considerably strengthened, and such a condition is supported by the rhythm induced by the climate variation due to solar insolation archived in the Cretaceous strata in the Songliao Basin. Thus, we speculate that the East Asian coastal mountains might have reached an altitude more than 2 km in the Late Cretaceous. Key Points East Asian climate was sensitive to orbital forcing in the Late Cretaceous East Asian coastal mountains amplified orbital forcing on East Asian climate variability East Asian coastal mountains were likely higher than 2 km in the Late Cretaceous
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-12
    Description: Highlights • East Asian climate evolution was dependent on the latitude of the proto-Tibetan Plateau in the deep past; • Global warming induced wetting at mid-latitude East Asian in the mid-Cretaceous; • The proto-Tibetan Plateau uplift led to drying in the subtropical East Asian in the mid-Cretaceous. Abstract Sedimentary records indicate that subtropical and mid-latitude East Asia exhibited considerable drying and wetting, respectively, during the mid-Cretaceous, which is considered to be relevant to much higher atmospheric carbon dioxide (pCO2) concentrations and/or proto-Tibetan Plateau (proto-TP) uplift. In order to explore and compare their roles on the East Asian climate evolution, we conducted simulations of the mid-Cretaceous climate system with different atmospheric pCO2 levels and varying topographies. The results show that both factors had significant influences on the East Asian climate. As the increase in atmospheric pCO2 levels from ∼560–1120 ppmv to ∼1120–2240 ppmv, the precipitation increases considerably over mid-latitude East Asia, but only small changes in the subtropical portion of East Asia occur. Simultaneously, the effects of the proto-TP uplift are opposite to those of global warming trend during that period. Generally, it leads to a precipitation decrease over subtropical East Asia, but rather minor changes over mid-latitude East Asia. These changes are qualitatively consistent with the deduction based on the geological records, but the magnitudes of the modeled precipitation changes are relatively smaller. Therefore, we can conclude that the subtropical East Asian drying during the mid-Cretaceous can be partly explained by the proto-TP uplift, while the mid-latitude East Asian wetting was partly due to global warming. However, additional factor(s) also played a significant role in the East Asian climate evolution during the mid-Cretaceous.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...