GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C11S03, doi:10.1029/2006JC003868.
    Description: Sediment dispersal in the Adriatic Sea was evaluated using coupled three-dimensional circulation and sediment transport models, representing conditions from autumn 2002 through spring 2003. The calculations accounted for fluvial sources, resuspension by waves and currents, and suspended transport. Sediment fluxes peaked during southwestward Bora wind conditions that produced energetic waves and strengthened the Western Adriatic Coastal Current. Transport along the western Adriatic continental shelf was nearly always to the south, except during brief periods when northward Sirocco winds reduced the coastal current. Much of the modeled fluvial sediment deposition was near river mouths, such as the Po subaqueous delta. Nearly all Po sediment remained in the northern Adriatic. Material from rivers that drain the Apennine Mountains traveled farther before deposition than Po sediment, because it was modeled with a lower settling velocity. Fluvial sediment delivered to areas with high average bed shear stress was more highly dispersed than material delivered to more quiescent areas. Modeled depositional patterns were similar to observed patterns that have developed over longer timescales. Specifically, modeled Po sediment accumulation was thickest near the river mouth with a very thin deposit extending to the northeast, consistent with patterns of modern sediment texture in the northern Adriatic. Sediment resuspended from the bed and delivered by Apennine Rivers was preferentially deposited on the northern side of the Gargano Peninsula, in the location of thick Holocene accumulation. Deposition here was highest during Bora winds when convergences in current velocities and off-shelf flux enhanced delivery of material to the midshelf.
    Description: The authors are grateful for funding and support from the Office of Naval Research’s Coastal Geosciences and Marine Modeling programs, the U.S. Geological Survey, and NATO’s SACLANT-CEN.
    Keywords: Sediment ; Numerical model ; Adriatic Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 6392-6407, doi:10.1029/2018JC014129.
    Description: Low levels of dissolved oxygen (DO) occur in many embayments throughout the world and have numerous detrimental effects on biota. Although measurement of in situ DO is straightforward with modern instrumentation, quantifying the volume of water in a given embayment that is hypoxic (hypoxic volume (HV)) is a more difficult task; however, this information is critical for determining whether management efforts to increase DO are having an overall impact. This paper uses output from a three‐dimensional numerical model to demonstrate that HV in Chesapeake Bay can be estimated well with as few as two vertical profiles. In addition, the cumulative hypoxic volume (HVC; the total amount of hypoxia in a given year) can be calculated with relatively low uncertainty (〈10%) if continuous DO data are available from two strategically positioned vertical profiles. This is because HV in the Chesapeake Bay is strongly constrained by the geometry of the embayment. A simple Geometric HV calculation method is presented and numerical model results are used to illustrate that for calculating HVC, the results using two daily‐averaged profiles are typically more accurate than those of the standard method that interpolates bimonthly cruise data. Bimonthly data produce less accurate estimates of HVC because high‐frequency changes in oxygen concentration, for example, due to regional‐weather‐ or storm‐induced changes in wind direction and magnitude, are not resolved. The advantages of supplementing cruise‐based sampling with continuous vertical profiles to estimate HVC should be applicable to other systems where hypoxic water is constrained to a specific area by bathymetry.
    Description: NOAA Grant Number: NA13NOS0120139
    Keywords: Chesapeake Bay ; Oxygen ; Dead zone ; Hypoxia ; Observing systems ; Estuary
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 13 (2016): 2011-2028, doi:10.5194/bg-13-2011-2016.
    Description: As three-dimensional (3-D) aquatic ecosystem models are used more frequently for operational water quality forecasts and ecological management decisions, it is important to understand the relative strengths and limitations of existing 3-D models of varying spatial resolution and biogeochemical complexity. To this end, 2-year simulations of the Chesapeake Bay from eight hydrodynamic-oxygen models have been statistically compared to each other and to historical monitoring data. Results show that although models have difficulty resolving the variables typically thought to be the main drivers of dissolved oxygen variability (stratification, nutrients, and chlorophyll), all eight models have significant skill in reproducing the mean and seasonal variability of dissolved oxygen. In addition, models with constant net respiration rates independent of nutrient supply and temperature reproduced observed dissolved oxygen concentrations about as well as much more complex, nutrient-dependent biogeochemical models. This finding has significant ramifications for short-term hypoxia forecasts in the Chesapeake Bay, which may be possible with very simple oxygen parameterizations, in contrast to the more complex full biogeochemical models required for scenario-based forecasting. However, models have difficulty simulating correct density and oxygen mixed layer depths, which are important ecologically in terms of habitat compression. Observations indicate a much stronger correlation between the depths of the top of the pycnocline and oxycline than between their maximum vertical gradients, highlighting the importance of the mixing depth in defining the region of aerobic habitat in the Chesapeake Bay when low-oxygen bottom waters are present. Improvement in hypoxia simulations will thus depend more on the ability of models to reproduce the correct mean and variability of the depth of the physically driven surface mixed layer than the precise magnitude of the vertical density gradient.
    Description: This work was supported by the NOAA IOOS program as part of the Coastal Ocean Modeling Testbed.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...