GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: Any plate has a growth process from small to large. The micro-blocks or micro-plates are sometimes the precursors of large plates. The origin, growth, aborting, extinction and residual process of micro-blocks are of great significance for the study of plate tectonics and pre-plate tectonics. The micro-block can be divided into continental, oceanic and mantle micro-blocks according to their compositions. In this paper, the micro-blocks in the global oceans have been summarized according to the following five environments: mid-ocean ridge system, subduction system, transform fault system, deep-sea intraplate system and extension-rift system. We first propose a genetic classification of micro-blocks comprising: detachment-derived, rifting-derived, transform-derived, propagation-derived, ridge jumping-derived, subduction-derived, accretion-derived, collision-derived and delamination-derived micro-blocks. The different types of micro-block boundaries such as active or fossil detachment fault, subduction zone, mid-ocean ridge, transform fault, fracture zone, transfer fault, accommodation zone, lithosphere-scale strike-slip fault, pseudofault, intra-oceanic convergent zone, overlapping spreading centre, non-transform offset, rheological crustal or mantle discontinuity, are systematically discussed for different micro-blocks. Thus, the number of triple junctions will be more than the 16 in the traditional Plate Tectonic Theory. A stability analysis of these triple junctions is the key to understanding the causes of micro-blocks. However, the micro-block has no ultimate cause, so it is unnecessary to pursue one ultimate cause or initiation of plate tectonics. These micro-blocks within oceanic basins, along oceanic margins or within the deep mantle, can not only be used to develop deep ocean fine structural analysis and plate tectonic reconstruction, but also to explain the causes of micro-blocks in some orogens. This will enrich the research of more detailed pre-orogenic or syn-orogenic evolution of orogenic belts, and even extend to the study of early Precambrian pre-plate tectonic mechanisms. The micro-block can be a transition among microplate, plate and terrane under a plate tectonic regime. It can also be formed in inter-sphere tectonic processes. It helps better our understanding of regimes of cratonic basin formation and intra-continental deformation which are the difficulties faced by the Plate Tectonics Theory. We speculate that the Micro-block Tectonics Theory is a unified tectonic theory of cross-layer, cross-phase, cross-space-time scale and cross-planet.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Numerous studies have provided compelling evidence that the Pacific Ocean has experienced substantial glacial/interglacial changes in bottom-water oxygenation associated with enhanced carbon dioxide storage in the glacial deep ocean. Under postulated low glacial bottom-water oxygen concentrations (O), redox zonation, biogeochemical processes and element fluxes in the sediments must have been distinctively different during the last glacial period (LGP) compared to current well-oxygenated conditions. In this study, we have investigated six sites situated in various European contract areas for the exploration of polymetallic nodules within the Clarion-Clipperton Zone (CCZ) in the NE Pacific and one site located in a protected Area of Particular Environmental Interest (APEI3) north of the CCZ. We found bulk sediment Mn maxima of up to 1 wt% in the upper oxic 10 cm of the sediments at all sites except for the APEI3 site. The application of a combined leaching protocol for the extraction of sedimentary Mn and Fe minerals revealed that mobilizable Mn(IV) represents the dominant Mn(oxyhydr)oxide phase with more than 70% of bulk solid-phase Mn. Steady state transport-reaction modeling showed that at postulated glacial O of 35 μM, the oxic zone in the sediments was much more compressed than today where upward diffusing pore-water Mn2+ was oxidized and precipitated as authigenic Mn(IV) at the oxic-suboxic redox boundary in the upper 5 cm of the sediments. Transient transport-reaction modeling demonstrated that with increasing O during the last glacial termination to current levels of ∼ 150 μM, (1) the oxic-suboxic redox boundary migrated deeper into the sediments and (2) the authigenic Mn(IV) peak was continuously mixed into subsequently deposited sediments by bioturbation causing the observed mobilizable Mn(IV) enrichment in the surface sediments. Such a distinct mobilizable Mn(IV) maximum was not found in the surface sediments of the APEI3 site, which indicates that the oxic zone was not as condensed during the LGP at this site due to two- to threefold lower organic carbon burial rates. Leaching data for sedimentary Fe minerals suggest that Fe(III) has not been diagenetically redistributed during the LGP at any of the investigated sites. Our results demonstrate that the basin-wide deoxygenation in the NE Pacific during the LGP was associated with (1) a much more compressed oxic zone at sites with carbon burial fluxes higher than 1.5 mg Corg m−2 d−1, (2) the authigenic formation of a sub-surface mobilizable Mn(IV) maximum in the upper 5 cm of the sediments and (3) a possibly intensified suboxic-diagenetic growth of polymetallic nodules. As our study provides evidence that authigenic Mn(IV) precipitated in the surface sediments under postulated low glacial O, it contributes to resolving a long-standing controversy concerning the origin of widely observed Mn-rich layers in glacial/deglacial deep-sea sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-08
    Description: Bottom trawling represents the most widespread anthropogenic physical disturbance to shelf sea sediments. While trawling-induced mortality in benthic fauna has been extensively investigated, its impacts on ecosystem functioning and carbon cycling at regional scales remain unclear. Using the North Sea as an example, we address these issues by synthesizing a high-resolution dataset of bottom trawling impact on sediments, feeding this dataset into a 3-dimensional physical–biogeochemical model to estimate trawling-induced changes in biomass, bioturbation and sedimentary organic carbon, and assessing model results with field samples. Results suggest a trawling-induced net reduction in macrobenthic biomass by 10-27%. Trawling-induced resuspension and reduction of bioturbation jointly and accumulatively reduce the regional sedimentary organic carbon sequestration capacity by 21-67%, equivalent to 0.58-1.84 Mt CO2 yr-1. Our study emphasizes the need for proper management of trawling on muddy seabeds, if the natural capacity of shelf seas for carbon sequestration should be conserved and restored.
    Type: Article , NonPeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Oceans play a major role on the exchange of carbon with the atmosphere and thereby on past climates with glacial/interglacial variations of the CO2 concentration. The melting of ice sheets during deglaciations lets the sea level rise which leads to the flooding of coastal land areas resulting in the transfer of terrestrial organic matter to the ocean. However, the consequences of such fluxes on the ocean biogeochemical cycle and uptake/release of CO2 are poorly constrained. Moreover, this potentially important exchange of carbon at the land-sea interface is not represented in most Earth System Models. We present here the implementation of terrestrial organic matter fluxes into the ocean at the transiently changing land-sea interface in the Max Planck Institute for Meteorology Earth System Model (MPI-ESM) and investigate their effect on the biogeochemistry during the last deglaciation. Our results show that during the deglaciation, most of the terrestrial organic matter inputs to the ocean occurs during Meltwater Pulse 1a (between 15–14 ka) which leads to additional 21.2 GtC of terrestrial origin (mostly originating from wood and humus). Although this additional organic matter input is relatively small in comparison to the global ocean inventory (0.06 %) and thus doesn’t have an impact on the global CO2 flux, the terrestrial organic matter fluxes initiate oceanic outgassing at regional hotspots like in Indonesia for a few hundred years. Finally, sensitivity experiments highlight that terrestrial organic matter fluxes are the drivers of oceanic outgassing in flooded coastal regions during Meltwater Pulse 1a. Furthermore, the magnitude of outgassing is rather insensitive to higher carbon to nutrients ratios of the terrestrial organic matter. Our results provide a first estimate of the importance of terrestrial organic matter fluxes in a transient deglaciation simulation. Moreover, our model development is an important step towards a fully coupled carbon cycle in an Earth System Model applicable for simulations of glacial/interglacial cycles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Stable barium isotopes are a potential proxy for riverine inputs into the ocean that reflect monsoon variability and climate change. However, dissolved Ba isotope (δ138BaDBa) geochemistry in river estuaries, a dynamic land to ocean transition zone, has rarely been systematically examined to date. Here, we show that significant Ba isotope fractionation occurs at near-zero salinities in the Yangtze and Pearl River Estuary, whereas conservative mixing dominates δ138BaDBa distributions beyond low salinities, which are well predicted by an ion exchange model. Elevated δ138BaDBa in the river endmember results from preferential removal of light Ba isotopes by adsorption to fluvial particles. Subsequently, δ138BaDBa rapidly drops to minimum signatures at increased salinities indicating particle desorption of isotopically light Ba. Nevertheless, the apparently conservative δ138BaDBa-salinity relationship beyond the low-salinity minimum in both estuaries provides a modern calibration for using Ba isotopes as a proxy for paleosalinity and river water inputs into the ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Direct comparison between paleo oceanic δ13C records and model results facilitates assessing simulated distributions and properties of water masses in the past. To accomplish this, we include a new representation of the stable carbon isotope 13C into the HAMburg Ocean Carbon Cycle model (HAMOCC), the ocean biogeochemical component of the Max Planck Institute Earth System Model (MPI-ESM). 13C is explicitly resolved for all existing oceanic carbon pools. We account for fractionation during air-sea gas exchange and for biological fractionation εp associated with photosynthetic carbon fixation during phytoplankton growth. We examine two εp parameterisations of different complexity: εpPopp varies with surface dissolved CO2 concentration (Popp et al., 1989), while εpLaws additionally depends on local phytoplankton growth rates (Laws et al., 1995). When compared to observations of δ13C in dissolved inorganic carbon (DIC), both parameterisations yield similar performance. However, with regard to δ13C in particulate organic carbon εpPopp shows a considerably improved performance than εpLaws, because the latter results in a too strong preference for 12C. The model also well reproduces the oceanic 13C Suess effect, i.e. the intrusion of the isotopically light anthropogenic CO2 into the ocean, based on comparison to other existing 13C models and to observation-based oceanic carbon uptake estimates over the industrial period. We further apply the approach of Eide et al. (2017a), who derived the first global oceanic 13C Suess effect estimate based on observations, to our model data that has ample spatial and temporal coverage. With this we are able to analyse in detail the underestimation of 13C Suess effect by this approach as it has been noted by Eide et al. (2017a). Based on our model we find underestimations of 13C Suess effect at 200 m by 0.24 ‰ in the Indian Ocean, 0.21 ‰ in the North Pacific, 0.26 ‰ in the South Pacific, 0.1 ‰ in the North Atlantic and 0.14 ‰ in the South Atlantic. We attribute the major sources of the underestimation to two assumptions in Eide et al. (2017a)'s approach: a spatially-constant preformed component of δ13CDIC in year 1940 and neglecting 13C Suess effect in CFC-12 free water.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The carbon cycle component of the newly developed Earth System Model of intermediate complexity CLIMBER-X is presented. The model represents the cycling of carbon through atmosphere, vegetation, soils, seawater and marine sediments. Exchanges of carbon with geological reservoirs occur through sediment burial, rock weathering and volcanic degassing. The state-of-the-art HAMOCC6 model is employed to simulate ocean biogeochemistry and marine sediments processes. The land model PALADYN simulates the processes related to vegetation and soil carbon dynamics, including permafrost and peatlands. The dust cycle in the model allows for an interactive determination of the input of the micro-nutrient iron into the ocean. A rock weathering scheme is implemented into the model, with the weathering rate depending on lithology, runoff and soil temperature. CLIMBER-X includes a simple representation of the methane cycle, with explicitly modelled natural emissions from land and the assumption of a constant residence time of CH4 in the atmosphere. Carbon isotopes 13C and 14C are tracked through all model compartments and provide a useful diagnostic for model-data comparison. A comprehensive evaluation of the model performance for present–day and the historical period shows that CLIMBER-X is capable of realistically reproducing the historical evolution of atmospheric CO2 and CH4, but also the spatial distribution of carbon on land and the 3D structure of biogeochemical ocean tracers. The analysis of model performance is complemented by an assessment of carbon cycle feedbacks and model sensitivities compared to state-of-the-art CMIP6 models. Enabling interactive carbon cycle in CLIMBER-X results in a relatively minor slow-down of model computational performance by ~20 %, compared to a throughput of ~10,000 simulation years per day on a single node with 16 CPUs on a high performance computer in a climate–only model setup. CLIMBER-X is therefore well suited to investigate the feedbacks between climate and the carbon cycle on temporal scales ranging from decades to 〉100,000 years.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: The development of stable barium (Ba) isotope measurements provides a novel tool to investigate the geochemical cycling of Ba in the ocean and its sediments. In sediment pore waters, gradients of dissolved Ba concentrations result from various diagenetic processes. The distribution and fractionation of Ba isotopes in the pore waters are expected to further improve our understanding of these early diagenetic control mechanisms. Here, we present pore water profiles of dissolved stable Ba isotopic signatures (δ138Bapw) from shallow water sediments covering the entire Pearl River Estuary (PRE) in Southern China. We find pronounced depth-dependent Ba isotope variations generally showing a shift from heavy to light δ138Bapw signatures from the sediment surface down to 15 cm depth. These gradients are well reproduced by a diffusion-reaction model, which generates an apparent fractionation factor (138ε) of −0.60 ± 0.10‰ pointing to preferential removal of low-mass Ba isotopes from the pore water during solution-solid phase interactions. Consequently, the combined diagenetic processes induce the highest δ138Bapw values of +0.5 to +0.7‰ in the pore waters of the topmost sediment layer. Although the detrital fraction dominates the Ba content in the PRE surface sediments, the determined gradients of pore water Ba isotopes, together with concentration variations of Ba and other redox-sensitive elements such as manganese (Mn), show that non-detrital excess Ba carriers including Mn oxides and authigenic barite clearly affect the post-depositional Ba dynamics. Stable Ba isotopes are thus a potentially powerful tracer of Ba geochemistry during early sediment diagenesis in estuarine depositional environments. Key Points We present a data set of dissolved stable Ba isotopic compositions in surface sediment pore waters of a large river estuary Pore water Ba isotope values generally decrease with increasing sediment depth, reflecting post-depositional Ba isotope fractionation A diffusion-reaction model predicts the distribution and fractionation of stable Ba isotopes in the sediment pore waters well
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Highlights • Microbe-mediated transformation of metal sulfide has enormous environmental impact. • Microbes provide templates for mineralization of metal sulfide crystals. • Sulfate reducing bacteria recover metal ions through metal sulfide precipitation. • Biosynthetic metal sulfide nanoparticles play a big role in pollutant sensing and treatment. • Metal sulfide-microbe biohybrid system has greater prospects in environmental field. Microorganisms play a key role in the natural circulation of various constituent elements of metal sulfides. Some microorganisms (such as Thiobacillus ferrooxidans) can promote the oxidation of metal sulfides to increase the release of heavy metals. However, other microorganisms (such as Desulfovibrio vulgaris) can transform heavy metals into metal sulfides crystals. Therefore, insight into the metal sulfides transformation mediated by microorganisms is of great significance to environmental protection. In this review, first, we discuss the mechanism and influencing factors of microorganisms transforming heavy metals into metal sulfides crystals in different environments. Then, we explore three microbe-mediated transformation forms of heavy metals to metal sulfides and their environmental applications: (1) transformation to metal sulfides precipitation for metal resource recovery; (2) transformation to metal sulfides nanoparticles (NPs) for pollutant treatment; (3) transformation to “metal sulfides-microbe” biohybrid system for clean energy production and pollutant remediation. Finally, we further provide critical views on the application of microbe-mediated metal sulfides transformation in the environmental field and discuss the need for future research.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...