GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Data  (19)
  • OceanRep  (6)
Document type
Keywords
Years
  • 1
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 61 (3). pp. 1120-1133.
    Publication Date: 2019-02-01
    Description: Marine organisms in the Mediterranean Sea experience the highest temperatures, salinities and oligotrophic conditions in its easternmost part along the eastern shores of the Levantine basin. Over the past three decades this region has warmed by ca. 1.5–3.0°C with current winter and summer extremums of 17°C and 31°C, respectively. In this study, we tested the response of the native abundant articulated coralline red alga Ellisolandia elongata to this warming. Coralline algae play a key role in coastal ecosystems by structuring marine habitats, providing shelter for a myriad of species, and substantially influencing the coastal carbon budget. Despite being ubiquitous along the Levantine coasts, coralline's ecology, physiology, and biogeochemical role are nearly unknown as well as their performance under different temperatures. Measurements of primary production, respiration and calcification in the temperatures range 15–35°C, which represent past, present and predicted local annual conditions, indicated two physiological tipping points: 1) metabolic breakdown above 31°C; 2) metabolic shift at 23°C, possibly promoting seasonal algal heterotrichy (perennation of the alga without its fronds). Annual production rates were evaluated under the current and predicted temperature regimes indicating a loss of ca. one third of the organic carbon and carbonate production by corallines contributed to the shallow Levantine coast in the upcoming decades. We predict that with continued warming, Eastern Mediterranean corallines will experience a westward range contraction, initiating with phenological shifts, followed by performance declines and population decreases, ending with local extinctions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: Human-induced ocean warming and acidification have received increasing attention over the past decade and are considered to have substantial consequences for a broad range of marine species and their interactions. Understanding how these interactions shift in response to climate change is particularly important with regard to foundation species, such as the brown alga Fucus vesiculosus. This macroalga represents the dominant habitat former on coastal rocky substrata of the Baltic Sea, fulfilling functions essential for the entire benthic community. Its ability to withstand extensive fouling and herbivory regulates the associated community and ecosystem dynamics. This study tested the interactive effects of future warming, acidification, and seasonality on the interactions of a marine macroalga with potential foulers and consumers. F. vesiculosus rockweeds were exposed to different combinations of conditions predicted regionally for the year 2100 (+∆5°C, +∆700 μatm CO2) using multifactorial long-term experiments in novel outdoor benthic mesocosms (“Benthocosms”) over 9–12-week periods in four seasons. Possible shifts in the macroalgal susceptibility to fouling and consumption were tested using consecutive bioassays. Algal susceptibility to fouling and grazing varied substantially among seasons and between treatments. In all seasons, warming predominantly affected anti-fouling and anti-herbivory interactions while acidification had a subtle nonsignificant influence. Interestingly, anti-microfouling activity was highest during winter under warming, while anti-macrofouling and anti-herbivory activities were highest in the summer under warming. These contrasting findings indicate that seasonal changes in anti-fouling and anti-herbivory traits may interact with ocean warming in altering F. vesiculosus community composition in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-12-14
    Description: The effects of ocean warming and acidification on Eastern Mediterranean coastal benthic communities were studied in a long-term research using benthic mesocosms ('benthocosms'). Temperature and pH treatments complied with the near-past, present and predicted-future levels. While biodiversity indices did not change significantly with warming (+3 ºC) and acidification (-0.5 pH units), community composition shifted from native to non-indigenous species dominance, and the abundance of calcifying species increased. In the summer, community functions presented a shift from autotrophic to heterotrophic system.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: The plea for using more “realistic,” community‐level, investigations to assess the ecological impacts of global change has recently intensified. Such experiments are typically more complex, longer, more expensive, and harder to interpret than simple organism‐level benchtop experiments. Are they worth the extra effort? Using outdoor mesocosms, we investigated the effects of ocean warming (OW) and acidification (OA), their combination (OAW), and their natural fluctuations on coastal communities of the western Baltic Sea during all four seasons. These communities are dominated by the perennial and canopy‐forming macrophyte Fucus vesiculosus—an important ecosystem engineer Baltic‐wide. We, additionally, assessed the direct response of organisms to temperature and pH in benchtop experiments, and examined how well organism‐level responses can predict community‐level responses to the dominant driver, OW. OW affected the mesocosm communities substantially stronger than acidification. OW provoked structural and functional shifts in the community that differed in strength and direction among seasons. The organism‐level response to OW matched well the community‐level response of a given species only under warm and cold thermal stress, that is, in summer and winter. In other seasons, shifts in biotic interactions masked the direct OW effects. The combination of direct OW effects and OW‐driven shifts of biotic interactions is likely to jeopardize the future of the habitat‐forming macroalga F. vesiculosus in the Baltic Sea. Furthermore, we conclude that seasonal mesocosm experiments are essential for our understanding of global change impact because they take into account the important fluctuations of abiotic and biotic pressures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-13
    Description: Defense strength as log effect ratio against microfouling by Bacillus sp., Cytophaga sp. and Vibrio sp. (averaged). Effect size 〉 0 indicates an attractive effect of surface-bond metabolites, effect size 〈 0 an inhibitory effect with the strongest defense at lowest values. Responses are detailed with regards to the four treatments: warm (+°C (delta+5)), acidified (-pH (delta +700µatm pCO2)), warm and acidified (+°C -pH), and ambient during four seasons: spring, summer, autumn, winter (n=3). The data set comprised 4 experimental runs: spring experiment (4.4.-10.6.2013), summer experiment 1 (4.7.-17.9.2013), autumn experiment (11.10-16.12.2013), winter experiment (16.1. - 28.3.2014).
    Keywords: Benthocosm_A1; Benthocosm_A2; Benthocosm_B1; Benthocosm_B2; Benthocosm_C1; Benthocosm_C2; Benthocosm_D1; Benthocosm_D2; Benthocosm_E1; Benthocosm_E2; Benthocosm_F1; Benthocosm_F2; Defense strength; Event label; Experiment; Experimental treatment; Kiel Fjord; MESO; Mesocosm experiment; Species
    Type: Dataset
    Format: text/tab-separated-values, 240 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-01-13
    Description: Defense strength as log effect ratio against macrofouling by Mytilus edulis and Amphibalanus imrovisus. Effect size 〉 0 indicate an attractive effect of surface-bond metabolites, effect size 〈 0 an inhibitory effect with strongest defense at lowest values. Responses are displayed in regard to the four treatments: warm (+°C (delta+5)), acidified (-pH (delta +700µatm pCO2)), warm and acidified (+°C -pH), and ambient during four seasons: spring, summer, autumn, winter (n=3) The data set comprised 4 experimental runs: spring experiment (4.4.-10.6.2013), summer experiment 1 (4.7.-17.9.2013), autumn experiment (11.10-16.12.2013), winter experiment (16.1. - 28.3.2014).
    Keywords: Benthocosm_A1; Benthocosm_A2; Benthocosm_B1; Benthocosm_B2; Benthocosm_C1; Benthocosm_C2; Benthocosm_D1; Benthocosm_D2; Benthocosm_E1; Benthocosm_E2; Benthocosm_F1; Benthocosm_F2; Defense strength; Event label; Experiment; Experimental treatment; Kiel Fjord; MESO; Mesocosm experiment; Species
    Type: Dataset
    Format: text/tab-separated-values, 568 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-13
    Description: Palatability as consumption of F. vesiculosus pellets by Idotea baltica (squares consumed in %). Consumption is displayed in regard to the four treatments: warm (+°C (delta+5)), acidified (-pH (delta +700µatm pCO2)), warm and acidified (+°C -pH), and ambient during four seasons: spring, summer, autumn, winter (n=3). The data set comprised 4 experimental runs: spring experiment (4.4.-10.6.2013), summer experiment 1 (4.7.-17.9.2013), autumn experiment (11.10-16.12.2013), winter experiment (16.1. - 28.3.2014).
    Keywords: Benthocosm_A1; Benthocosm_A2; Benthocosm_B1; Benthocosm_B2; Benthocosm_C1; Benthocosm_C2; Benthocosm_D1; Benthocosm_D2; Benthocosm_E1; Benthocosm_E2; Benthocosm_F1; Benthocosm_F2; Event label; Experiment; Experimental treatment; Kiel Fjord; MESO; Mesocosm experiment; Palatability; Species
    Type: Dataset
    Format: text/tab-separated-values, 288 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Raddatz, Stefanie; Guy-Haim, Tamar; Rilov, Gil; Wahl, Martin (2017): Future warming and acidification effects on anti-fouling and anti-herbivory traits of the brown alga Fucus vesiculosus (Phaeophyceae). Journal of Phycology, 53(1), 44-58, https://doi.org/10.1111/jpy.12473
    Publication Date: 2023-02-24
    Description: Human-induced ocean warming and acidification have received increasing attention over the past decade and are considered to have substantial consequences for a broad range of marine species and their interactions. Understanding how these interactions shift in response to climate change is particularly important with regard to foundation species, such as the brown alga Fucus vesiculosus. This macroalga represents the dominant habitat former on coastal rocky substrata of the Baltic Sea, fulfilling functions essential for the entire benthic community. Its ability to withstand extensive fouling and herbivory regulates the associated community and ecosystem dynamics. This study tested the interactive effects of future warming, acidification, and seasonality on the interactions of a marine macroalga with potential foulers and consumers. F. vesiculosus rockweeds were exposed to different combinations of conditions predicted regionally for the year 2100 (+∆5°C, +∆700 μatm CO2) using multifactorial long-term experiments in novel outdoor benthic mesocosms (“Benthocosms”) over 9–12-week periods in four seasons. Possible shifts in the macroalgal susceptibility to fouling and consumption were tested using consecutive bioassays. Algal susceptibility to fouling and grazing varied substantially among seasons and between treatments. In all seasons, warming predominantly affected anti-fouling and anti-herbivory interactions while acidification had a subtle nonsignificant influence. Interestingly, anti-microfouling activity was highest during winter under warming, while anti-macrofouling and anti-herbivory activities were highest in the summer under warming. These contrasting findings indicate that seasonal changes in anti-fouling and anti-herbivory traits may interact with ocean warming in altering F. vesiculosus community composition in the future.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...