GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Keywords
Language
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Marine biological invasions. ; Electronic books.
    Description / Table of Contents: Few things threaten the integrity of ecosystems more than biological invasions. This book fully explores the current state of marine bioinvasions, which have been occurring at an alarmingly increased rate in recent decades.
    Type of Medium: Online Resource
    Pages: 1 online resource (662 pages)
    Edition: 1st ed.
    ISBN: 9783540792369
    Series Statement: Ecological Studies ; v.204
    DDC: 577.718
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-12-12
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Global warming, bioinvasions, and parasitism affect single‐species performances and species interactions, substantially impacting the structure and stability of marine ecosystems. In light of accelerated global change, the information derived from studies focusing on single species and single drivers is insufficient, calling for a multi‐stressor approach under near‐natural conditions. We investigated the effects of warming (+3°C) on the performance of a benthic community composed of native and invasive macroalgae, consumers and a trematode parasite in a mesocosm setting. We also assessed the effects of warming and parasitism on the survival and growth of gastropods and mussels and the thermal dependency of trematode performance. Our findings show that warming and grazing by infected gastropods had a large detrimental effect on the invasive macroalga growth. Furthermore, the single and interactive effects of parasitism and warming were detrimental to intermediate host survival and growth, especially to large mussels. Finally, cercarial emergence positively correlated to the natural peaks of summer temperatures, while infection intensity in mussels was higher in larger individuals. Our findings suggest that grazing and warming will be detrimental to the invasive macroalga, favoring the native alga. Moreover, parasitism will enhance grazing, especially in summer, when higher temperatures trigger parasite development. However, parasite‐enhanced grazing may be buffered by higher mortality or a shift in the size of infected intermediate hosts under warming. Our findings demonstrate how complex effects of ocean warming can be on food webs and how they can be mediated by parasitism and, as a result, influence native and invasive macroalgae differently.〈/p〉
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: ddc:577.7 ; Baltic community ; climate change ; bioinvasions ; parasitism ; interactive effects ; macroalgae growth
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-15
    Description: Background One of the most influential forms of biological invasions is that of invasive ecosystem engineers, species that affect other biota via alterations to the abiotic environment. Such species can have wide-reaching consequences because they alter ecosystems and essentially “change the rules of existence” for a broad suite of resident biota. They thus affect resources or stressors that affect other organisms.The objective of this systematic review will be to quantify the positive and negative impacts of invasive ecosystem engineers on ecosystem structure and functioning, and to identify factors that cause their effects to vary. Methods We will search a number of online databases to gather empirical evidence from the literature on the impacts of invasive ecosystem engineers on: (1) species richness and other univariate and multivariate measures of biodiversity; (2) productivity and abundance of algae, and animals; and (3) biogeochemical cycling and other flows of energy and materials, including trophic interactions. Data from relevant studies will be extracted and used in a random effects meta-analysis in order to estimate the average effect size of invasive ecosystem engineers on each response of interest.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Experimental Marine Biology and Ecology, 463 . pp. 125-134.
    Publication Date: 2017-12-14
    Description: The Mediterranean mid-littoral zone is inhabited by two sympatric chthamalid barnacles: Chthamalus stellatus and Euraphia depressa, C. stellatus extends from the high midtidal zone, above the algal belt, to the supra-littoral fringe, E. depressa is restricted to the uppermost intertidal levels in wave-beaten places and to cryptic habitats lower on the shore within the belt of C. stellatus. Previous studies have suggested that the reason for the fragmented distribution pattern of E. depressa is competitive displacement by the sympatric C. stellatus, following random settlement. This hypothesis is in agreement with the common model of zonation suggested by Connell that lower distribution limits are determined by biotic factors (competition and predation), while upper limits are set by physical factors. It is hard to test the validity of this model for this barnacle pair since the early ontogenetic stages of the species are morphologically indistinguishable, hindering our ability to understand distribution processes. Using 16S mtDNA as a genetic marker in a multiplex PCR system, cyprids and spats were individually identified. Settlement and recruitment rates were assessed using settlement plates, and the effect of post-settlement processes was tested with transplantation of settlers between zones. Results showed different strategies in each species: settlement of E. depressa was habitat-specific, while settlement of C. stellatus was random. Shifting individuals of C. stellatus to the high and cryptic zones resulted in high mortality; however, exposing juveniles of E. depressa that settled in artificially cryptic low shore habitat to C. stellatus presence had no effect on their survival. These finding do not agree with the formerly suggested hypothesis that zonation is mainly determined by post-settlement factors, and that the interspecies boundary is determined by interspecific competition, implying that competition model cannot be adapted to Mediterranean intertidal zonation and that other models, dominated by physical enforcement and pre-settlement recruitment-limiting factors, may prevail in this ecosystem.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-12-21
    Description: Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programmes. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulphide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta-analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and economic costs, macroalgal blooms have ecological effects that may alter their capacity to deliver important ecosystem services.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: Invasive ecosystem engineers (IEE) are potentially one of the most influential types of biological invaders. They are expected to have extensive ecological impacts by altering the physical–chemical structure of ecosystems, thereby changing the rules of existence for a broad range of resident biota. To test the generality of this expectation, we used a global systematic review and meta-analysis to examine IEE effects on the abundance of individual species and communities, biodiversity (using several indices) and ecosystem functions, focusing on marine and estuarine environments. We found that IEE had a significant effect (positive and negative) in most studies testing impacts on individual species, but the overall (cumulative) effect size was small and negative. Many individual studies showed strong IEE effects on community abundance and diversity, but the direction of effects was variable, leading to statistically non-significant overall effects in most categories. In contrast, there was a strong overall effect on most ecosystem functions we examined. IEE negatively affected metabolic functions and primary production, but positively affected nutrient flux, sedimentation and decomposition. We use the results to develop a conceptual model by highlighting pathways whereby IEE impact communities and ecosystem functions, and identify several sources of research bias in the IEE-related invasion literature. Only a few of the studies simultaneously quantified IEE effects on community/diversity and ecosystem functions. Therefore, understanding how IEE may alter biodiversity–ecosystem function relationships should be a primary focus of future studies of invasion biology. Moreover, the clear effects of IEE on ecosystem functions detected in our study suggest that scientists and environmental managers ought to examine how the effects of IEE might be manifested in the services that marine ecosystems provide to humans.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-08
    Description: Ecologists must understand how marine life responds to changing local conditions, rather than to overall global temperature rise, say Amanda E. Bates and 16 colleagues.
    Type: Article , PeerReviewed
    Format: text
    Format: audio
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 61 (3). pp. 1120-1133.
    Publication Date: 2019-02-01
    Description: Marine organisms in the Mediterranean Sea experience the highest temperatures, salinities and oligotrophic conditions in its easternmost part along the eastern shores of the Levantine basin. Over the past three decades this region has warmed by ca. 1.5–3.0°C with current winter and summer extremums of 17°C and 31°C, respectively. In this study, we tested the response of the native abundant articulated coralline red alga Ellisolandia elongata to this warming. Coralline algae play a key role in coastal ecosystems by structuring marine habitats, providing shelter for a myriad of species, and substantially influencing the coastal carbon budget. Despite being ubiquitous along the Levantine coasts, coralline's ecology, physiology, and biogeochemical role are nearly unknown as well as their performance under different temperatures. Measurements of primary production, respiration and calcification in the temperatures range 15–35°C, which represent past, present and predicted local annual conditions, indicated two physiological tipping points: 1) metabolic breakdown above 31°C; 2) metabolic shift at 23°C, possibly promoting seasonal algal heterotrichy (perennation of the alga without its fronds). Annual production rates were evaluated under the current and predicted temperature regimes indicating a loss of ca. one third of the organic carbon and carbonate production by corallines contributed to the shallow Levantine coast in the upcoming decades. We predict that with continued warming, Eastern Mediterranean corallines will experience a westward range contraction, initiating with phenological shifts, followed by performance declines and population decreases, ending with local extinctions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-12-21
    Description: Within the COST action EMBOS (European Marine Biodiversity Observatory System) the degree and variation of the diversity and densities of soft-bottom communities from the lower intertidal or the shallow subtidal was measured at 28 marine sites along the European coastline (Baltic, Atlantic, Mediterranean) using jointly agreed and harmonized protocols, tools and indicators. The hypothesis tested was that the diversity for all taxonomic groups would decrease with increasing latitude. The EMBOS system delivered accurate and comparable data on the diversity and densities of the soft sediment macrozoobenthic community over a large-scale gradient along the European coastline. In contrast to general biogeographic theory, species diversity showed no linear relationship with latitude, yet a bell-shaped relation was found. The diversity and densities of benthos were mostly positively correlated with environmental factors such as temperature, salinity, mud and organic matter content in sediment, or wave height, and related with location characteristics such as system type (lagoons, estuaries, open coast) or stratum (intertidal, subtidal). For some relationships, a maximum (e.g. temperature from 15–20°C; mud content of sediment around 40%) or bimodal curve (e.g. salinity) was found. In lagoons the densities were twice higher than in other locations, and at open coasts the diversity was much lower than in other locations. We conclude that latitudinal trends and regional differences in diversity and densities are strongly influenced by, i.e. merely the result of, particular sets and ranges of environmental factors and location characteristics specific to certain areas, such as the Baltic, with typical salinity clines (favouring insects) and the Mediterranean, with higher temperatures (favouring crustaceans). Therefore, eventual trends with latitude are primarily indirect and so can be overcome by local variation of environmental factors.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-06
    Description: Human-induced ocean warming and acidification have received increasing attention over the past decade and are considered to have substantial consequences for a broad range of marine species and their interactions. Understanding how these interactions shift in response to climate change is particularly important with regard to foundation species, such as the brown alga Fucus vesiculosus. This macroalga represents the dominant habitat former on coastal rocky substrata of the Baltic Sea, fulfilling functions essential for the entire benthic community. Its ability to withstand extensive fouling and herbivory regulates the associated community and ecosystem dynamics. This study tested the interactive effects of future warming, acidification, and seasonality on the interactions of a marine macroalga with potential foulers and consumers. F. vesiculosus rockweeds were exposed to different combinations of conditions predicted regionally for the year 2100 (+∆5°C, +∆700 μatm CO2) using multifactorial long-term experiments in novel outdoor benthic mesocosms (“Benthocosms”) over 9–12-week periods in four seasons. Possible shifts in the macroalgal susceptibility to fouling and consumption were tested using consecutive bioassays. Algal susceptibility to fouling and grazing varied substantially among seasons and between treatments. In all seasons, warming predominantly affected anti-fouling and anti-herbivory interactions while acidification had a subtle nonsignificant influence. Interestingly, anti-microfouling activity was highest during winter under warming, while anti-macrofouling and anti-herbivory activities were highest in the summer under warming. These contrasting findings indicate that seasonal changes in anti-fouling and anti-herbivory traits may interact with ocean warming in altering F. vesiculosus community composition in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...