GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Marine geology, Amsterdam [u.a.] : Elsevier Science, 1964, (2009), 1872-6151
    In: year:2009
    In: extent:10
    Description / Table of Contents: Porangahau Ridge, located offshore the Wairarapa on the Hikurangi Margin, is an active ocean-continent collision region in northeastern New Zealand coastal waters. Bottom simulating reflections (BSRs) in seismic data indicate the potential for significant gas hydrate deposits across this part of the margin. Beneath Porangahau Ridge a prominent high-amplitude reflection band has been observed to extend from a deep BSR towards the seafloor. Review of the seismic data suggest that this high-amplitude band is caused by local shoaling of the base of gas hydrate stability due to advective heat flow and it may constitute the location of elevated gas hydrate concentrations. During R/V Tangaroa cruise TAN0607 in 2006 heat flow probing for measurements of vertical fluid migration, sediment coring for methane concentrations, and additional seismic profiles were obtained across the ridge. In a subsequent 2007 expedition, on R/V Sonne cruise SO191, a controlled source electromagnetic (CSEM) experiment was conducted along the same seismic, geochemical, and heat flow transect to reveal the electrical resistivity distribution. CSEM data highlight a remarkable coincidence of anomalously high resistivity along the western, landward flank of the ridge which point to locally higher gas hydrate concentration above the high amplitude reflection band. Measured sediment temperature profiles, also along the western flank, consistently show non-linear and concave geothermal gradients typical of advective heat flow. Geochemical data reveal elevated methane concentrations in surface sediments concomitant with a rapid decline in sulfate concentrations indicating elevated methane flux and oxidation of methane in conjunction with sulfate reduction at the landward ridge base. Together, these data sets suggest that the western rim of Porangahau Ridge is a tectonically driven zone of rising fluids that transport methane and cause an upward inflection of the base of gas hydrate stability and the formation of locally enriched gas hydrate above the reflective zone.
    Type of Medium: Online Resource
    Pages: 10 , graph. Darst
    ISSN: 1872-6151
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: The Chatham Rise is located offshore of New Zealand's South Island. Vast areas of the Chatham Rise are covered in circular to elliptical seafloor depressions that appear to be forming through a bathymetrically controlled mechanism, as seafloor depressions 2-5 km in diameter are found in water depths of 800-1100 m. High resolution P-Cable 3D seismic data were acquired in 2013 across one of these depressions. The seafloor depression is interpreted as a mounded contourite. Our data reveal several smaller buried depressions (〈20-650 m diameter) beneath the mounded contourite that we interpret as paleo-pockmarks. These pockmarks are underlain by a complex polygonal fault system that deforms strata and an unusual conical feature. We interpret the conical feature as a sediment remobilization structure based on the presence of stratified reflections within the feature, RMS amplitude values and lack of velocity anomaly that would indicate a non-sedimentary origin. The sediment remobilization structure, polygonal faults and paleo-depressions are indicators of past subsurface fluid flow. We hypothesize that the pockmarks provided the necessary topographic roughness for formation of the mounded contourites thus linking fluid expulsion and deposition of contouritic drifts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: Prokaryote communities were investigated on the seasonally stratified Alaska Beaufort Shelf (ABS). Water and sediment directly underlying water with origin in the Arctic, Pacific or Atlantic oceans were analyzed by pyrosequencing and length heterogeneity-PCR in conjunction with physicochemical and geographic distance data to determine what features structure ABS microbiomes. Distinct bacterial communities were evident in all water masses. Alphaproteobacteria explained similarity in Arctic surface water and Pacific derived water. Deltaproteobacteria were abundant in Atlantic origin water and drove similarity among samples. Most archaeal sequences in water were related to unclassified marine Euryarchaeota. Sediment communities influenced by Pacific and Atlantic water were distinct from each other and pelagic communities. Firmicutes and Chloroflexi were abundant in sediment, although their distribution varied in Atlantic and Pacific influenced sites. Thermoprotei dominated archaea in Pacific influenced sediments and Methanomicrobia dominated in methane-containing Atlantic influenced sediments. Length heterogeneity-PCR data from this study were analyzed with data from methane-containing sediments in other regions. Pacific influenced ABS sediments clustered with Pacific sites from New Zealand and Chilean coastal margins. Atlantic influenced ABS sediments formed another distinct cluster. Density and salinity were significant structuring features on pelagic communities. Porosity co-varied with benthic community structure across sites and methane did not. This study indicates that the origin of water overlying sediments shapes benthic communities locally and globally and that hydrography exerts greater influence on microbial community structure than the availability of methane.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-06-19
    Description: Two ∼6 m long sediment cores were collected along the ∼300 m isobath on the Alaskan Beaufort Sea continental margin. Both cores showed distinct sulfate-methane transition zones (SMTZ) at 105 and 120 cm below seafloor (cmbsf). Sulfate was not completely depleted below the SMTZ but remained between 30 and 500 μM. Sulfate reduction and anaerobic oxidation of methane (AOM) determined by radiotracer incubations were active throughout the methanogenic zone. Although a mass balance could not explain the source of sulfate below the SMTZ, geochemical profiles and correlation network analyses of biotic and abiotic data suggest a cryptic sulfur cycle involving iron, manganese and barite. Inhibition experiments with molybdate and 2-bromoethanesulfonate (BES) indicated decoupling of sulfate reduction and AOM and competition between sulfate reducers and methanogens for substrates. While correlation network analyses predicted coupling of AOM to iron reduction, the addition of manganese or iron did not stimulate AOM. Since none of the classical archaeal anaerobic methanotrophs (ANME) were abundant, the involvement of unknown or unconventional phylotypes in AOM is conceivable. The resistance of AOM activity to inhibitors implies deviation from conventional enzymatic pathways. This work suggests that the classical redox cascade of electron acceptor utilization based on Gibbs energy yields does not always hold in diffusion-dominated systems, and instead biotic processes may be more strongly coupled to mineralogy.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-09-08
    Description: Kessler et al. (Reports, 21 January 2011, p. 312) reported that methane released from the 2010 Deepwater Horizon blowout, approximately 40% of the total hydrocarbon discharge, was consumed quantitatively by methanotrophic bacteria in Gulf of Mexico deep waters over a 4-month period. We find the evidence explicitly linking observed oxygen anomalies to methane consumption ambiguous and extension of these observations to hydrate-derived methane climate forcing premature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 61 (S1). S300-S323.
    Publication Date: 2019-09-23
    Description: Methane concentration and isotopic composition was measured in ice-covered and ice-free waters of the Arctic Ocean during 11 surveys spanning the years of 1992–1995 and 2009. During ice-free periods, methane flux from the Beaufort shelf varies from 0.14 mg CH4 m−2 d−1 to 0.43 mg CH4 m−2 d−1. Maximum fluxes from localized areas of high methane concentration are up to 1.52 mg CH4 m−2 d−1. Seasonal buildup of methane under ice can produce short-term fluxes of methane from the Beaufort shelf that varies from 0.28 mg CH4 m−2 d−1 to 1.01 mg CH4 m−2 d−1. Scaled-up estimates of minimum methane flux from the Beaufort Sea and pan-Arctic shelf for both ice-free and ice-covered periods range from 0.02 Tg CH4 yr−1 and 0.30 Tg CH4 yr−1, respectively to maximum fluxes of 0.18 Tg CH4 yr−1 and 2.2 Tg CH4 yr−1, respectively. A methane flux of 0.36 Tg CH4 yr−1 from the deep Arctic Ocean was estimated using data from 1993 to 1994. The flux can be as much as 2.35 Tg CH4 yr−1 estimated from maximum methane concentrations and wind speeds of 12 m/s, representing only 0.42% of the annual atmospheric methane budget of ∼ 560 Tg CH4 yr−1. There were no significant changes in methane fluxes during the time period of this study. Microbial methane sources predominate with minor influxes from thermogenic methane offshore Prudhoe Bay and the Mackenzie River delta and may include methane from gas hydrate. Methane oxidation is locally important on the shelf and is a methane sink in the deep Arctic Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-08-07
    Description: The southern Hikurangi Subduction Margin is characterized by significant accretion with predicted high rates of fluid expulsion. Bottom simulating reflections (BSRs) are widespread on this margin, predominantly occurring beneath thrust ridges. We present seismic data across the Porangahau Ridge on the outer accretionary wedge. The data show high-amplitude reflections above the regional BSR level. Based on polarity and reflection strength, we interpret these reflections as being caused by free gas. We propose that the presence of gas above the regional level of BSRs indicates local upwarping of the base of gas hydrate stability caused by advective heatflow from upward migrating fluids, although we cannot entirely rule out alternative processes. Simplified modelling of the increase of the thermal gradient associated with fluid flow suggests that funnelling of upward migrating fluids beneath low-permeability slope basins into the Porangahau Ridge would not lead to the pronounced thermal anomaly inferred from upwarping of the base of gas hydrate stability. Focussing of fluid flow is predicted to take place deep in the accretionary wedge and/or the underthrust sediments. Above the high-amplitude reflections, sediment reflectivity is low. A lack of lateral continuity of reflections suggests that reflectivity is lost because of a destruction of sediment layering from deformation rather than gas-hydrate-related amplitude blanking. Structural permeability from fracturing of sediments during deformation may facilitate fluid expulsion on the ridge. A gap in the BSR in the southern part of the study area may be caused by a loss of gas during fluid expulsion. We speculate that gaps in otherwise continuous BSRs that are observed beneath some thrusts on the Hikurangi Margin may be characteristic of other locations experiencing focussed fluid expulsion.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-11-17
    Description: Sulfate-dependent anaerobic oxidation of methane (AOM) is the key sedimentary microbial process limiting methane emissions from marine sediments and methane seeps. In this study, we investigate how the presence of low-organic content sediment influences the capacity and efficiency of AOM at Bullseye vent, a gas hydrate-bearing cold seep offshore of Vancouver Island, Canada. The upper 8 m of sediment contains 〈0.4 wt.% total organic carbon (OC) and primarily consists of glacially-derived material that was deposited 14,900–15,900 yrs BP during the retreat of the late Quaternary Cordilleran Ice Sheet. We hypothesize this aged and exceptionally low-OC content sedimentary OM is biologically refractory, thereby limiting degradation of non-methane OM by sulfate reduction and maximizing methane consumption by sulfate-dependent AOM. A radiocarbon-based dissolved inorganic carbon (DIC) isotope mass balance model demonstrates that respired DIC in sediment pore fluids is derived from a fossil carbon source that is devoid of 14C. A fossil origin for the DIC precludes remineralization of non-fossil OM present within the sulfate zone as a significant contributor to pore water DIC, suggesting that nearly all sulfate is available for anaerobic oxidation of fossil seep methane. Methane flux from the SMT to the sediment water interface in a diffusion-dominated flux region of Bullseye vent was, on average, 96% less than at an OM-rich seep in the Gulf of Mexico with a similar methane flux regime. Evidence for enhanced methane oxidation capacity within OM-poor sediments has implications for assessing how climate-sensitive reservoirs of sedimentary methane (e.g., gas hydrate) will respond to ocean warming, particularly along glacially-influenced mid and high latitude continental margins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-08-07
    Description: Porangahau Ridge, located offshore the Wairarapa on the Hikurangi Margin, is an active ocean-continent collision region in northeastern New Zealand coastal waters. Bottom simulating reflections (BSRs) in seismic data indicate the potential for significant gas hydrate deposits across this part of the margin. Beneath Porangahau Ridge a prominent high-amplitude reflection band has been observed to extend from a deep BSR towards the seafloor. Review of the seismic data suggest that this high-amplitude band is caused by local shoaling of the base of gas hydrate stability due to advective heat flow and it may constitute the location of elevated gas hydrate concentrations. During R/V Tangaroa cruise TAN0607 in 2006 heat flow probing for measurements of vertical fluid migration, sediment coring for methane concentrations, and additional seismic profiles were obtained across the ridge. In a subsequent 2007 expedition, on R/V Sonne cruise SO191, a controlled source electromagnetic (CSEM) experiment was conducted along the same seismic, geochemical, and heat flow transect to reveal the electrical resistivity distribution. CSEM data highlight a remarkable coincidence of anomalously high resistivity along the western, landward flank of the ridge which point to locally higher gas hydrate concentration above the high amplitude reflection band. Measured sediment temperature profiles, also along the western flank, consistently show non-linear and concave geothermal gradients typical of advective heat flow. Geochemical data reveal elevated methane concentrations in surface sediments concomitant with a rapid decline in sulfate concentrations indicating elevated methane flux and oxidation of methane in conjunction with sulfate reduction at the landward ridge base. Together, these data sets suggest that the western rim of Porangahau Ridge is a tectonically driven zone of rising fluids that transport methane and cause an upward inflection of the base of gas hydrate stability and the formation of locally enriched gas hydrate above the reflective zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...