GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-11-23
    Description: Based on inferences from proxy records the Miocene (23.03–5.33 Ma) was a time of amplified polar warmth compared to today. However, it remains a challenge to simulate a warm Miocene climate and pronounced polar warmth at reconstructed Miocene CO〈sub〉2〈/sub〉 concentrations. Using a state‐of‐the‐art Earth‐System‐Model, we implement a high‐resolution paleobathymetry and simulate Miocene climate at different atmospheric CO〈sub〉2〈/sub〉 concentrations. We estimate global mean surface warming of +3.1°C relative to the preindustrial at a CO〈sub〉2〈/sub〉 level of 450 ppm. An increase of atmospheric CO〈sub〉2〈/sub〉 from 280 to 450 ppm provides an individual warming of ∼1.4°C, which is as strong as all other Miocene forcing contributions combined. Substantial changes in surface albedo are vital to explain Miocene surface warming. Simulated surface temperatures fit well with proxy reconstructions at low‐ to mid‐latitudes. The high latitude cooling bias becomes less pronounced for higher atmospheric CO〈sub〉2〈/sub〉 concentrations. At such CO〈sub〉2〈/sub〉 levels simulated Miocene climate shows a reduced polar amplification, linked to a breakdown of seasonality in the Arctic Ocean. A pronounced warming in boreal fall is detected for a CO〈sub〉2〈/sub〉 increase from 280 to 450 ppm, in comparison to weaker warming for CO〈sub〉2〈/sub〉 changes from 450 to 720 ppm. Moreover, a pronounced warming in winter is detected for a CO〈sub〉2〈/sub〉 increase from 450 to 720 ppm, in contrast to a moderate summer temperature increase, which is accompanied by a strong sea‐ice concentration decline that promotes cloud formation in summer via enhanced moisture availability. As a consequence planetary albedo increases and dampens the temperature response to CO〈sub〉2〈/sub〉 forcing at a warmer Miocene background climate.
    Description: Key Points: At a CO〈sub〉2〈/sub〉 level of 450 ppm, a Miocene simulation shows a global mean surface warming of +3.1°C relative to the preindustrial state. Atmospheric CO〈sub〉2〈/sub〉 increase from 280 to 450 ppm causes a warming of ∼1.4°C, which is as strong as all other forcing factors combined. At higher atmospheric CO〈sub〉2〈/sub〉 levels, the Miocene climate shows a reduced polar amplification linked to a breakdown of seasonality in the Arctic.
    Description: Alfred Wegener Institute
    Description: Helmholtz Centre for Polar and Marine Research
    Description: https://doi.org/10.1594/PANGAEA.943430
    Description: https://github.com/FESOM/fesom2/
    Description: https://mpimet.mpg.de/en/science/modeling-with-icon/code-avilability
    Keywords: atmospheric CO2 ; Miocene ; Miocene temperature change ; polar amplification ; climate modeling ; Miocene bathymetry
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-11-13
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Owing to the complicated spatial–temporal characteristics of East Asian precipitation (EAP), climate models have limited skills in simulating the modern Asian climate. This consequently leads to large uncertainties in simulations of the past EAP variation and future projections. Here, we explore the performance of the newly developed Alfred Wegener Institute Climate Model, version 3 (AWI‐CM3) in simulating the climatological summer EAP. To test whether the model's skill depends on its atmosphere resolution, we design two AWI‐CM3 simulations with different horizontal resolutions. The result shows that both simulations have acceptable performance in simulating the summer mean EAP, generally better than the majority of individual models participating in the Coupled Model Intercomparison Project (CMIP6). However, for the monthly EAP from June to August, AWI‐CM3 exhibits a decayed skill, which is due to the subseasonal movement of the western Pacific subtropical high bias. The higher‐resolution AWI‐CM3 simulation shows an overall improvement relative to the one performed at a relatively lower resolution in all aspects taken into account regarding the EAP. We conclude that AWI‐CM3 is a suitable tool for exploring the EAP for the observational period. Having verified the model's skill for modern climate, we suggest employing the AWI‐CM3, especially with high atmosphere resolution, both for applications in paleoclimate studies and future projections.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉This figure shows the skill scores of AWI‐CM3 and CMIP6 models in simulating the climatological summer East Asian precipitation (EAP), which indicates that AWI‐CM3 simulations perform better than most CMIP6 individual models for the summer mean EAP, while AWI‐CM3's skills decay from June to August.〈boxed-text position="anchor" content-type="graphic" id="joc8075-blkfxd-0001" xml:lang="en"〉 〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:08998418:media:joc8075:joc8075-toc-0001"〉 〈alt-text〉image〈/alt-text〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Helmholtz Climate Initiative REKLIM
    Description: Helmholtz Program
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: China Scholarship Council http://dx.doi.org/10.13039/501100004543
    Description: https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-monthly_v2022_doi_download.html
    Description: https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.05
    Description: http://aphrodite.st.hirosaki-u.ac.jp/products.html
    Description: https://jra.kishou.go.jp/JRA-55/index_en.html
    Description: https://esgf-node.llnl.gov/search/cmip6
    Keywords: ddc:551.6 ; AWI‐CM3 ; CMIP6 ; East Asia ; summer precipitation
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-11-24
    Description: The Middle Miocene (15.99–11.65 Ma) of Europe witnessed major climatic, environmental, and vegetational change, yet we are lacking detailed reconstructions of Middle Miocene temperature and precipitation patterns over Europe. Here, we use a high‐resolution (∼0.75°) isotope‐enabled general circulation model (ECHAM5‐wiso) with time‐specific boundary conditions to investigate changes in temperature, precipitation, and δ〈sup〉18〈/sup〉O in precipitation (δ〈sup〉18〈/sup〉O〈sub〉p〈/sub〉). Experiments were designed with variable elevation configurations of the European Alps and different atmospheric CO〈sub〉2〈/sub〉 levels to examine the influence of Alpine elevation and global climate forcing on regional climate and δ〈sup〉18〈/sup〉Op patterns. Modeling results are in agreement with available paleobotanical temperature data and with low‐resolution Middle Miocene experiments of the Miocene Model Intercomparison Project (MioMIP1). However, simulated precipitation rates are 300–500 mm/yr lower in the Middle Miocene than for pre‐industrial times for central Europe. This result is consistent with precipitation estimates from herpetological fossil assemblages, but contradicts precipitation estimates from paleobotanical data. We attribute the Middle Miocene precipitation change in Europe to shifts in large‐scale pressure patterns in the North Atlantic and over Europe and associated changes in wind direction and humidity. We suggest that global climate forcing contributed to a maximum δ〈sup〉18〈/sup〉O〈sub〉p〈/sub〉 change of ∼2‰ over high elevation (Alps) and ∼1‰ over low elevation regions. In contrast, we observe a maximum modeled δ〈sup〉18〈/sup〉O〈sub〉p〈/sub〉 decrease of 8‰ across the Alpine orogen due to Alpine topography. However, the elevation‐δ〈sup〉18〈/sup〉O〈sub〉p〈/sub〉 lapse rate shallows in the Middle Miocene, leading to a possible underestimation of paleotopography when using present‐day δ〈sup〉18〈/sup〉O〈sub〉p〈/sub〉—elevation relationships data for stable isotope paleoaltimetry studies.
    Description: Key Points: A high‐resolution isotope‐enabled general circulation model is used to explore Middle Miocene climate and precipitation δ〈sup〉18〈/sup〉O across Europe. Middle Miocene bi‐directional precipitation change consistent with herpetological fossils and account for precipitation δ〈sup〉18〈/sup〉O variations. Global Miocene climate forcing contributed a max δ〈sup〉18〈/sup〉O change of ∼2‰ over the high Alpine elevation and to ∼1‰ over low elevation.
    Description: German research fondation
    Description: Alexander‐von‐Humboldt foundation, Feodor‐Lynen‐Fellowship
    Description: Alexander‐von‐Humboldt foundation, Humboldt Research Fellowship
    Description: Scientific Steering Committee
    Description: https://mpimet.mpg.de/fileadmin/projekte/ICON-ESM/mpi-m_sla_201202.pdf
    Description: https://gitlab.awi.de/mwerner/mpi-esm-wiso
    Description: https://zenodo.org/record/6308475#.Y0gmDSFS-2w
    Keywords: ddc:550.724 ; Europe ; Middle Miocene ; climate modeling ; stable water isotopes ; temperature ; precipitation ; paleoclimate ; paleoelevation ; Alps
    Language: English
    Type: doc-type:article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-07
    Description: The Pliocene Model Intercomparison Project is the first coordinated climate model comparison for a warmer palaeoclimate with atmospheric CO2 significantly higher than pre-industrial concentrations. The simulations of the mid-Pliocene warm period show global warming of between 1.8 and 3.6 °C above pre-industrial surface air temperatures, with significant polar amplification. Here we perform energy balance calculations on all eight of the coupled ocean–atmosphere simulations within PlioMIP Experiment 2 to evaluate the causes of the increased temperatures and differences between the models. In the tropics simulated warming is dominated by greenhouse gas increases, with cloud albedo feedbacks enhancing the warming in most of the models, but by widely varying amounts. The responses to mid-Pliocene climate forcing in the Northern Hemisphere mid-latitudes are substantially different between the climate models, with the only consistent response being a warming due to increased greenhouse gases. In the high latitudes all the energy balance components become important, but the dominant warming influence comes from the clear sky albedo. This demonstrates the importance of specified ice sheet and high latitude vegetation boundary conditions and simulated sea ice and snow albedo feedbacks. The largest components in the overall uncertainty are associated with cloud albedo feedbacks in the tropics and polar clear sky albedo, particularly in sea ice regions. These simulations show that high latitude albedo feedbacks provide the most significant enhancements to Pliocene greenhouse warming.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-06-14
    Description: Based on simulations with 15 climate models in the Pliocene Model Intercomparison Project (PlioMIP), the regional climate of East Asia (focusing on China) during the mid-Pliocene is investigated in this study. Compared to the pre-industrial, the multi-model ensemble mean (MMM) of all models shows the East Asian summer winds (EASWs) largely strengthen in monsoon China, and the East Asian winter winds (EAWWs) strengthen in south monsoon China but slightly weaken in north monsoon China in the mid-Pliocene. The MMM of all models also illustrates a warmer and wetter mid-Pliocene climate in China. The simulated weakened mid-Pliocene EAWWs in north monsoon China and intensified EASWs in monsoon China agree well with geological reconstructions. However, there is a large model–model discrepancy in simulating mid-Pliocene EAWW, which should be further addressed in the future work of PlioMIP.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-05-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: PANGAEA Documentation , notRev
    Format: application/zip
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-16
    Description: Thermodynamic arguments imply that global mean rainfall increases in a warmer atmosphere; however, dynamical effects may result in more significant diversity of regional precipitation change. Here we investigate rainfall changes in the mid-Pliocene Warm Period (~ 3 Ma), a time when temperatures were 2–3ºC warmer than the pre-industrial era, using output from the Pliocene Model Intercomparison Projects phases 1 and 2 and sensitivity climate model experiments. In the Mid-Pliocene simulations, the higher rates of warming in the northern hemisphere create an interhemispheric temperature gradient that enhances the southward cross-equatorial energy flux by up to 48%. This intensified energy flux reorganizes the atmospheric circulation leading to a northward shift of the Inter-Tropical Convergence Zone and a weakened and poleward displaced Southern Hemisphere Subtropical Convergences Zones. These changes result in drier-than-normal Southern Hemisphere tropics and subtropics. The evaluation of the mid-Pliocene adds a constraint to possible future warmer scenarios associated with differing rates of warming between hemispheres.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU
    In:  EPIC3Paleoceanography and Paleoclimatology, AGU, 35(9), pp. e2019PA003782, ISSN: 2572-4517
    Publication Date: 2021-02-16
    Description: The past provides evidence of abrupt climate shifts and changes in the frequency of climate and weather extremes. We explore the non‐linear response to orbital forcing and then consider climate millennial variability down to daily weather events. Orbital changes are translated into regional responses in temperature, where the precessional response is related to nonlinearities and seasonal biases in the system. We question regularities found in climate events by analyzing the distribution of inter‐event waiting times. Periodicities of about 900 and 1150 years are found in ice cores besides the prominent 1500‐years cycle. However, the variability remains indistinguishable from a random process, suggesting that centennial‐to‐millennial variability is stochastic in nature. New numerical techniques are developed allowing for a high resolution in the dynamically relevant regions like coasts, major upwelling regions, and high latitudes. Using this model, we find a strong sensitivity of the Atlantic meridional overturning circulation depending on where the deglacial meltwater is injected into. Meltwater into the Mississippi and near Labrador hardly affect the large‐scale ocean circulation, whereas subpolar hosing mimicking icebergs yields a quasi shutdown. The same multi‐scale approach is applied to radiocarbon simulations enabling a dynamical interpretation of marine sediment cores. Finally, abrupt climate events also have counterparts in the recent climate records, revealing a close link between climate variability, the statistics of North Atlantic weather patterns, and extreme events.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-02-16
    Description: A range of future climate scenarios are projected for high atmospheric CO2 concentrations, given uncertainties over future human actions as well as potential environmental and climatic feedbacks. The geological record offers an opportunity to understand climate system response to a range of forcings and feedbacks which operate over multiple temporal and spatial scales. Here, we examine a single interglacial during the late Pliocene (KM5c, ca. 3.205±0.01 Ma) when atmospheric CO2 exceeded pre-industrial concentrations, but were similar to today and to the lowest emission scenarios for this century. As orbital forcing and continental configurations were almost identical to today, we are able to focus on equilibrium climate system response to modern and near-future CO2. Using proxy data from 32 sites, we demonstrate that global mean sea-surface temperatures were warmer than pre-industrial values, by ∼2.3°C for the combined proxy data (foraminifera Mg∕Ca and alkenones), or by ∼3.2–3.4°C (alkenones only). Compared to the pre-industrial period, reduced meridional gradients and enhanced warming in the North Atlantic are consistently reconstructed. There is broad agreement between data and models at the global scale, with regional differences reflecting ocean circulation and/or proxy signals. An uneven distribution of proxy data in time and space does, however, add uncertainty to our anomaly calculations. The reconstructed global mean sea-surface temperature anomaly for KM5c is warmer than all but three of the PlioMIP2 model outputs, and the reconstructed North Atlantic data tend to align with the warmest KM5c model values. Our results demonstrate that even under low-CO2 emission scenarios, surface ocean warming may be expected to exceed model projections and will be accentuated in the higher latitudes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Copernicus
    In:  EPIC3Climate of the Past, Copernicus, 16(6), pp. 2275-2323, ISSN: 1814-9332
    Publication Date: 2021-07-01
    Description: We present the Alfred Wegener Institute's contribution to the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) wherein we employ the Community Earth System Models (COSMOS) that include a dynamic vegetation scheme. This work builds on our contribution to Phase 1 of the Pliocene Model Intercomparison Project (PlioMIP1) wherein we employed the same model without dynamic vegetation. Our input to the PlioMIP2 special issue of Climate of the Past is twofold. In an accompanying paper we compare results derived with COSMOS in the framework of PlioMIP2 and PlioMIP1. With this paper we present details of our contribution with COSMOS to PlioMIP2. We provide a description of the model and of methods employed to transfer reconstructed mid-Pliocene geography, as provided by the Pliocene Reconstruction and Synoptic Mapping Initiative Phase 4 (PRISM4), to model boundary conditions. We describe the spin-up procedure for creating the COSMOS PlioMIP2 simulation ensemble and present large-scale climate patterns of the COSMOS PlioMIP2 mid-Pliocene core simulation. Furthermore, we quantify the contribution of individual components of PRISM4 boundary conditions to characteristics of simulated mid-Pliocene climate and discuss implications for anthropogenic warming. When exposed to PRISM4 boundary conditions, COSMOS provides insight into a mid-Pliocene climate that is characterised by increased rainfall (+0.17 mm d−1) and elevated surface temperature (+3.37 ∘C) in comparison to the pre-industrial (PI). About two-thirds of the mid-Pliocene core temperature anomaly can be directly attributed to carbon dioxide that is elevated with respect to PI. The contribution of topography and ice sheets to mid-Pliocene warmth is much smaller in contrast – about one-quarter and one-eighth, respectively, and nonlinearities are negligible. The simulated mid-Pliocene climate comprises pronounced polar amplification, a reduced meridional temperature gradient, a northwards-shifted tropical rain belt, an Arctic Ocean that is nearly free of sea ice during boreal summer, and muted seasonality at Northern Hemisphere high latitudes. Simulated mid-Pliocene precipitation patterns are defined by both carbon dioxide and PRISM4 paleogeography. Our COSMOS simulations confirm long-standing characteristics of the mid-Pliocene Earth system, among these increased meridional volume transport in the Atlantic Ocean, an extended and intensified equatorial warm pool, and pronounced poleward expansion of vegetation cover. By means of a comparison of our results to a reconstruction of the sea surface temperature (SST) of the mid-Pliocene we find that COSMOS reproduces reconstructed SST best if exposed to a carbon dioxide concentration of 400 ppmv. In the Atlantic to Arctic Ocean the simulated mid-Pliocene core climate state is too cold in comparison to the SST reconstruction. The discord can be mitigated to some extent by increasing carbon dioxide that causes increased mismatch between the model and reconstruction in other regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...