GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • BIOACID; Biological Impacts of Ocean Acidification  (2)
  • Alkalinity, total; Aragonite saturation state; Baltic Sea; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chloroiodomethane; Coast and continental shelf; DATE/TIME; Day of experiment; Dibromochloromethane; Dibromomethane; Diiodomethane; Dimethyl sulfide, dissolved; Dissolved silica, colorimetric (Mullin & Riley, 1955); Entire community; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Iodoethane; Iodomethane; KOSMOS_2012_Tvaerminne; MESO; Mesocosm experiment; Mesocosm label; Mesocosm or benthocosm; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphorus, inorganic, dissolved; Salinity; Silicate; SOPRAN; Surface Ocean Processes in the Anthropocene; Temperate; Temperature, water; Treatment; Tribromomethane; Type  (1)
  • Aphanizomenon flos-aquae, biomass as carbon; Aphanizophyll; BIOACID; Biological Impacts of Ocean Acidification; Chaetoceros sp., biomass as carbon; DATE/TIME; Day of experiment; KOSMOS_2012_Tvaerminne; MESO; Mesocosm experiment; Mesocosm label; Nitrogen fixation rate; Phase; Skeletonema marinoi; δ15N  (1)
Document type
Keywords
Publisher
Years
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Schulz, Kai Georg; Bellerby, Richard G J; Brussaard, Corina P D; Büdenbender, Jan; Czerny, Jan; Engel, Anja; Fischer, Matthias; Krug, Sebastian; Lischka, Silke; Koch-Klavsen, Stephanie; Ludwig, Andrea; Meyerhöfer, Michael; Nondal, G; Silyakova, Anna; Stuhr, Annegret; Riebesell, Ulf (2013): Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide. Biogeosciences, 10(1), 161-180, https://doi.org/10.5194/bg-10-161-2013
    Publication Date: 2023-10-21
    Description: Ocean acidification and carbonation, driven by anthropogenic emissions of carbon dioxide (CO2), have been shown to affect a variety of marine organisms and are likely to change ecosystem functioning. High latitudes, especially the Arctic, will be the first to encounter profound changes in carbonate chemistry speciation at a large scale, namely the under-saturation of surface waters with respect to aragonite, a calcium carbonate polymorph produced by several organisms in this region. During a CO2 perturbation study in 2010, in the framework of the EU-funded project EPOCA, the temporal dynamics of a plankton bloom was followed in nine mesocosms, manipulated for CO2 levels ranging initially from about 185 to 1420 matm. Dissolved inorganic nutrients were added halfway through the experiment. Autotrophic biomass, as identified by chlorophyll a standing stocks (Chl a), peaked three times in all mesocosms. However, while absolute Chl a concentrations were similar in all mesocosms during the first phase of the experiment, higher autotrophic biomass was measured at high in comparison to low CO2 during the second phase, right after dissolved inorganic nutrient addition. This trend then reversed in the third phase. There were several statistically significant CO2 effects on a variety of parameters measured in certain phases, such as nutrient utilization, standing stocks of particulate organic matter, and phytoplankton species composition. Interestingly, CO2 effects developed slowly but steadily, becoming more and more statistically significant with time. The observed CO2 related shifts in nutrient flow into different phytoplankton groups (mainly diatoms, dinoflagellates, prasinophytes and haptophytes) could have consequences for future organic matter flow to higher trophic levels and export production, with consequences for ecosystem productivity and atmospheric CO2.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Horn, Henriette G; Sander, Nils; Stuhr, Annegret; Algueró-Muñiz, Maria; Bach, Lennart Thomas; Löder, Martin G J; Boersma, Maarten; Riebesell, Ulf; Aberle, Nicole (2016): Low CO2 Sensitivity of Microzooplankton Communities in the Gullmar Fjord, Skagerrak: Evidence from a Long-Term Mesocosm Study. PLoS ONE, 11(11), e0165800, https://doi.org/10.1371/journal.pone.0165800
    Publication Date: 2024-03-06
    Description: Ocean acidification is considered as a crucial stressor for marine communities. In this study, we tested the effects of the IPCC RPC6.0 end-of-century acidification scenario on a natural plankton community in the Gullmar Fjord, Sweden, during a long-term mesocosm experiment from a spring bloom to a mid-summer situation. The focus of this study was on microzooplankton and its interactions with phytoplankton and mesozooplankton. The microzooplankton community was dominated by ciliates, especially small Strombidium sp., with the exception of the last days when heterotrophic dinoflagellates increased in abundance. We did not observe any effects of high CO2 on the community composition and diversity of microzooplankton. While ciliate abundance, biomass and growth rate were not affected by elevated CO2, we observed a positive effect of elevated CO2 on dinoflagellate abundances. Additionally, growth rates of dinoflagellates were significantly higher in the high CO2 treatments. Given the higher Chlorophyll a content measured under high CO2, our results point at mainly indirect effects of CO2 on microzooplankton caused by changes in phytoplankton standing stocks, in this case most likely an increase in small-sized phytoplankton of 〈8 µm. Overall, the results from the present study covering the most important part of the growing season indicate that coastal microzooplankton communities are rather robust towards realistic acidification scenarios.
    Keywords: BIOACID; Biological Impacts of Ocean Acidification
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Paul, Allanah Joy; Achterberg, Eric Pieter; Bach, Lennart Thomas; Boxhammer, Tim; Czerny, Jan; Haunost, Mathias; Schulz, Kai Georg; Stuhr, Annegret; Riebesell, Ulf (2016): No observed effect of ocean acidification on nitrogen biogeochemistry in a summer Baltic Sea plankton community. Biogeosciences, 13(13), 3901-3913, https://doi.org/10.5194/bg-13-3901-2016
    Publication Date: 2024-03-06
    Description: Nitrogen fixation by filamentous cyanobacteria supplies significant amounts of new nitrogen (N) to the Baltic Sea. This balances N loss processes such as denitrification and anammox, and forms an important N source supporting primary and secondary production in N-limited post-spring bloom plankton communities. Laboratory studies suggest that filamentous diazotrophic cyanobacteria growth and N2-fixation rates are sensitive to ocean acidification, with potential implications for new N supply to the Baltic Sea. In this study, our aim was to assess the effect of ocean acidification on diazotroph growth and activity as well as the contribution of diazotrophically fixed N to N supply in a natural plankton assemblage. We enclosed a natural plankton community in a summer season in the Baltic Sea near the entrance to the Gulf of Finland in six large-scale mesocosms (volume ∼ 55m3) and manipulated fCO2 over a range relevant for projected ocean acidification by the end of this century (average treatment fCO2: 365–1231µatm).
    Keywords: Aphanizomenon flos-aquae, biomass as carbon; Aphanizophyll; BIOACID; Biological Impacts of Ocean Acidification; Chaetoceros sp., biomass as carbon; DATE/TIME; Day of experiment; KOSMOS_2012_Tvaerminne; MESO; Mesocosm experiment; Mesocosm label; Nitrogen fixation rate; Phase; Skeletonema marinoi; δ15N
    Type: Dataset
    Format: text/tab-separated-values, 1870 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-15
    Keywords: Alkalinity, total; Aragonite saturation state; Baltic Sea; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chloroiodomethane; Coast and continental shelf; DATE/TIME; Day of experiment; Dibromochloromethane; Dibromomethane; Diiodomethane; Dimethyl sulfide, dissolved; Dissolved silica, colorimetric (Mullin & Riley, 1955); Entire community; Field experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Iodoethane; Iodomethane; KOSMOS_2012_Tvaerminne; MESO; Mesocosm experiment; Mesocosm label; Mesocosm or benthocosm; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphorus, inorganic, dissolved; Salinity; Silicate; SOPRAN; Surface Ocean Processes in the Anthropocene; Temperate; Temperature, water; Treatment; Tribromomethane; Type
    Type: Dataset
    Format: text/tab-separated-values, 4098 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...