GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI  (7)
  • TAYLOR & FRANCIS LTD  (4)
  • 1
    Publication Date: 2020-09-08
    Description: Species of the dinophyte genus Alexandrium are widely distributed and are notorious bloom formers and producers of various potent phycotoxins. The species Alexandrium taylorii is known to form recurrent and dense blooms in the Mediterranean, but its toxin production potential is poorly studied. Here we investigated toxin production potential of a Mediterranean A. taylorii clonal strain by combining state-of-the-art screening for various toxins known to be produced within Alexandrium with a sound morphological and molecular designation of the studied strain. As shown by a detailed thecal plate analysis, morphology of the A. taylorii strain AY7T from the Adriatic Sea conformed with the original species description. Moreover, newly obtained Large Subunit (LSU) and Internal Transcribed Spacers (ITS) rDNA sequences perfectly matched with the majority of other Mediterranean A. taylorii strains from the databases. Based on both ion pair chromatography coupled to post-column derivatization and fluorescence detection (LC-FLD) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis it is shown that A. taylorii AY7T does not produce paralytic shellfish toxins (PST) above a detection limit of ca. 1 fg cell−1, and also lacks any traces of spirolides and gymnodimines. The strain caused cell lysis of protistan species due to poorly characterized lytic compounds, with a density of 185 cells mL−1 causing 50% cell lysis of cryptophyte bioassay target cells (EC50). As shown here for the first time A. taylorii AY7T produced goniodomin A (GDA) at a cellular level of 11.7 pg cell−1. This first report of goniodomin (GD) production of A. taylorii supports the close evolutionary relationship of A. taylorii to other identified GD-producing Alexandrium species. As GD have been causatively linked to fish kills, future studies of Mediterranean A. taylorii blooms should include analysis of GD and should draw attention to potential links to fish kills or other environmental damage.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-07
    Description: Azaspiracids (AZA) are a group of lipophilic toxins, which are produced by a few species of the marine nanoplanktonic dinoflagellates Azadinium and Amphidoma (Amphidomataceae). A survey was conducted in 2018 to increase knowledge on the diversity and distribution of amphidomatacean species and their toxins in Irish and North Sea waters (North Atlantic). We here present a detailed morphological, phylogenetic, and toxinological characterization of 82 new strains representing the potential AZA producers Azadinium spinosum and Amphidoma languida. A total of ten new strains of Am. languida were obtained from the North Sea, and all conformed in terms of morphology and toxin profile (AZA-38 and-39) with previous records from the area. Within 72 strains assigned to Az. spinosum there were strains of two distinct ribotypes (A and B) which consistently differed in their toxin profile (dominated by AZA-1 and -2 in ribotype A, and by AZA-11 and -51 in ribotype B strains). Five strains conformed in morphology with Az. spinosum, but no AZA could be detected in these strains. Moreover, they revealed significant nucleotide differences compared to known Az. spinosum sequences and clustered apart from all other Az. spinosum strains within the phylogenetic tree, and therefore were provisionally designated as Az. cf. spinosum. These Az. cf. spinosum strains without detectable AZA were shown not to cause amplification in the species-specific qPCR assay developed to detect and quantify Az. spinosum. As shown here for the first time, AZA profiles differed between strains of Az. spinosum ribotype A in the presence/absence of AZA-1, AZA-2, and/or AZA-33, with the majority of strains having all three AZA congeners, and others having only AZA-1, AZA-1 and AZA-2, or AZA-1 and AZA-33. In contrast, no AZA profile variability was observed in ribotype B strains. Multiple AZA analyses of a period of up to 18 months showed that toxin profiles (including absence of AZA for Az. cf. spinosum strains) were consistent and stable over time. Total AZA cell quotas were highly variable both among and within strains, with quotas ranging from 0.1 to 63 fg AZA cell-1. Cell quota variability of single AZA compounds for Az. spinosum strains could be as high as 330-fold, but the underlying causes for the extraordinary large variability of AZA cell quota is poorly understood.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    TAYLOR & FRANCIS LTD
    In:  EPIC3European Journal of Phycology, TAYLOR & FRANCIS LTD, 53(1), pp. 14-28, ISSN: 0967-0262
    Publication Date: 2019-02-07
    Description: Amphidoma is an old though poorly studied thecate dinophyte that has attracted attention recently as a potential producerof azaspiracids (AZA), a group of lipophilic phycotoxins. A new species, Amphidoma parvula, sp. nov. is described from theSouth Atlantic shelf of Argentina. With a Kofoidean thecal plate pattern Po, cp, X, 6′, 6′′, 6C, 5S, 6′′′, 2′′′′, the cultivatedstrain H-1E9 (from which the type material of Am. parvula, sp. nov. was prepared) shared the characteristic platearrangement of Amphidoma each with six apical, precingular and postcingular plates. Amphidoma parvula, sp. nov. differs from other species of Amphidoma by a characteristic combination of small size (10.7–13.6 μm in length), ovoid shape, high length ratio between epitheca and hypotheca, and small length ratio between apical and precingular plates. Other morphological details, such as the number and arrangement of sulcal plates and the fine structure of the apical pore complex support the close relationship between Amphidoma and the other known genus of Amphidomataceae, Azadinium. However, Am. parvula, sp. nov. lacks a ventral pore, a characteristically structured pore found in all contemporary electron microscopy studies of Amphidoma and Azadinium. As inferred from liquid chromatography coupled with tandem mass spectrometry, Am. parvula, sp. nov. did not produce AZA in measurable amounts. Molecular phylogenetics confirmed the systematic placement of Am. parvula, sp. nov. in Amphidoma (as sister species of Amphidoma languida) and the Amphidomataceae. The results of this study have improved the knowledge of Amphidomataceae biodiversity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    TAYLOR & FRANCIS LTD
    In:  EPIC3European Journal of Phycology, TAYLOR & FRANCIS LTD, 49(4), pp. 413-428, ISSN: 0967-0262
    Publication Date: 2014-10-27
    Description: The dinophycean genus Heterocapsa is of considerable interest as it contains a number of bloom-forming and/or harmful species. Fine structure of organic body scales is regarded as the most important morphological feature for species determination but currently is unknown for the species H. minima described by Pomroy 25 years ago. Availability of a culture of H. minima collected in the south-west of Ireland allowed us to provide important information for this species, including cell size, cell organelle location, thecal plate pattern, body scale fine structure and molecular phylogeny. Light microscopy revealed the presence of one reticulate chloroplast, an elongated centrally located nucleus, and the presence of one pyrenoid surrounded by a starch sheath. Scanning electron microscopy (SEM) of the thecal plate pattern indicated that Pomroy erroneously designated the narrow first cingular plate as a sulcal plate. In addition, SEM revealed as yet unreported details of the apical pore complex and uncommon ornamentations of hypothecal plates. Organic body scales of H. minima were about 400 nm in size, roundish, with a small central hole and one central, six peripheral and three radiating spines. They differ from other body scales described within this genus allowing for positive identification of H. minima. Heterocapsa minima shares gross cell morphological features (hyposome smaller than episome, elongated nucleus in the middle of the cell, one pyrenoid located in the episome on its left side) with H. arctica (both subspecies H. arctica subsp. arctica and H. arctica subsp. frigida), H. lanceolata and H. rotundata. These relationships are reflected in the phylogenetic trees based on LSU and ITS rDNA sequence data, which identified H. arctica (both subspecies), H. rotundata and H. lanceolata as close relatives of H. minima.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-05-29
    Description: Alexandrium ostenfeldii is a toxic dinoflagellate that has recently bloomed in Ouwerkerkse Kreek, The Netherlands, and which is able to cause a serious threat to shellfish consumers and aquacultures. We used a large set of 68 strains to the aim of fully characterizing the toxin profiles of the Dutch A. ostenfeldii in consideration of recent reports of novel toxins. Alexandrium ostenfeldii is known as a causative species of paralytic shellfish poisoning, and consistently in the Dutch population we determined the presence of several paralytic shellfish toxins (PST) including saxitoxin (STX), GTX2/3 (gonyautoxins), B1 and C1/C2. We also examined the production of spiroimine toxins by the Dutch A. ostenfeldii strains. An extensive liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis revealed a high intraspecific variability of spirolides (SPX) and gymnodimines (GYM). Spirolides included 13-desMethyl-spirolide C generally as the major compound and several other mostly unknown SPX-like compounds that were detected and characterized. Besides spirolides, the presence of gymnodimine A and 12-Methyl-gymnodimine A was confirmed, together with two new gymnodimines. One of these was tentatively identified as an analogue of gymnodimine D and was the most abundant gymnodimine (calculated cell quota up to 274 pg cell−1, expressed as GYM A equivalents). Our multi-clonal approach adds new analogues to the increasing number of compounds in these toxin classes and revealed a high strain variability in cell quota and in toxin profile of toxic compounds within a single population.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-08-12
    Description: Harmful effects caused by the exposure to paralytic shellfish toxins (PSTs) and bioactive extracellular compounds (BECs) on bivalves are frequently difficult to attribute to one or the other compound group. We evaluate and compare the distinct effects of PSTs extracted from Alexandrium catenella (Alex5) cells and extracellular lytic compounds (LCs) produced by A. tamarense (NX-57-08) on Mytilus edulis hemocytes. We used a 4 h dose–response in vitro approach and analyzed how these effects correlate with those observed in a previous in vivo feeding assay. Both bioactive compounds caused moderated cell death (10–15%), being dose-dependent for PST-exposed hemocytes. PSTs stimulated phagocytic activity at low doses, with a moderate incidence in lysosomal damage (30–50%) at all tested doses. LCs caused a dose-dependent impairment of phagocytic activity (up to 80%) and damage to lysosomal membranes (up to 90%). PSTs and LCs suppressed cellular ROS production and scavenged H2O2 in in vitro assays. Neither PSTs nor LCs affected the mitochondrial membrane potential in hemocytes. In vitro effects of PST extracts on M. edulis hemocytes were consistent with our previous study on in vivo exposure to PST-producing algae, while for LCs, in vivo and in vitro results were not as consistent.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    TAYLOR & FRANCIS LTD
    In:  EPIC3European Journal of Phycology, TAYLOR & FRANCIS LTD, 54(3), pp. 417-431, ISSN: 0967-0262
    Publication Date: 2020-08-25
    Description: The Prorocentrales are a unique group of dinophytes based on several apomorphic traits, but species delimitation is challenging within the group. The type species of Prorocentrum, namely P. micans, cannot be determined unambiguously, as important characters are not preserved in the original material collected in the first half of the 19th century. Water samples were taken at the type locality of P. micans in the Baltic Sea off Kiel (Germany) and strains with a morphology consistent with the protologue were established. An in-depth morphological analysis was performed, illustrating minute traits such as the periflagellar platelets and three different types of thecal pores. rRNA sequence data allowed for molecular characterization of the species. The newly collected material of P. micans was used for epitypification with the result that the type species of Prorocentrum can now be determined unambiguously.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-12-22
    Description: Various species of Alexandrium can produce a number of bioactive compounds, e.g., paralytic shellfish toxins (PSTs), spirolides, gymnodimines, goniodomins, and also uncharacterised bioactive extracellular compounds (BECs). The latter metabolites are released into the environment and affect a large range of organisms (from protists to fishes and mammalian cell lines). These compounds mediate allelochemical interactions, have anti-grazing and anti-parasitic activities, and have a potentially strong structuring role for the dynamic of Alexandrium blooms. In many studies evaluating the effects of Alexandrium on marine organisms, only the classical toxins were reported and the involvement of BECs was not considered. A lack of information on the presence/absence of BECs in experimental strains is likely the cause of contrasting results in the literature that render impossible a distinction between PSTs and BECs effects. We review the knowledge on Alexandrium BEC, (i.e., producing species, target cells, physiological effects, detection methods and molecular candidates). Overall, we highlight the need to identify the nature of Alexandrium BECs and urge further research on the chemical interactions according to their ecological importance in the planktonic chemical warfare and due to their potential collateral damage to a wide range of organisms.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-16
    Description: Numerous potentially toxic plankton species commonly occur in the Black Sea, and phycotoxins have been reported. However, the taxonomy, phycotoxin profiles, and distribution of harmful microalgae in the basin are still understudied. An integrated microscopic (light microscopy) and molecular (18S rRNA gene metabarcoding and qPCR) approach complemented with toxin analysis was applied at 41 stations in the northwestern part of the Black Sea for better taxonomic coverage and toxin profiling in natural populations. The combined dataset included 20 potentially toxic species, some of which (Dinophysis acuminata, Dinophysis acuta, Gonyaulax spinifera, and Karlodinium veneficum) were detected in over 95% of the stations. In parallel, pectenotoxins (PTX-2 as a major toxin) were registered in all samples, and yessotoxins were present at most of the sampling points. PTX-1 and PTX-13, as well as some YTX variants, were recorded for the first time in the basin. A positive correlation was found between the cell abundance of Dinophysis acuta and pectenotoxins, and between Lingulodinium polyedra and Protoceratium reticulatum and yessotoxins. Toxic microalgae and toxin variant abundance and spatial distribution was associated with environmental parameters. Despite the low levels of the identified phycotoxins and their low oral toxicity, chronic toxic exposure could represent an ecosystem and human health hazard.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-04-27
    Description: The Prorocentrales are a unique group of dinophytes based on several apomorphic traits, but species delimitation is challenging within the group. Prorocentrum triestinum was described by Josef Schiller in 1918 as an important bloomforming species from Trieste (Mediterranean, Adriatic Sea) with a conspicuous asymmetric outline and a small, asymmetrically located subapical spine. All subsequent records under this name fail to conform to Schiller’s original description. These inconsistencies have their origin in John Dodge’s 1975 revision of Prorocentrum, which placed Prorocentrum redfieldii, a more symmetrical, slender species with a long apical spine, into synonymy under P. triestinum. To clarify this confusion, we collected samples at the type locality of P. triestinum in Trieste and established a strain that is morphologically consistent with the protologue and suitable for use in epitypification. Morphology and rRNA sequence data of this strain were compared with four new strains identified as P. redfieldii from the Mediterranean Sea and the North Atlantic Ocean. Cells of P. triestinum had an asymmetric outline in lateral view and a small, dorso-subapical spine. These features, which are readily resolved by light microscopy, were distinct from those of the nearly symmetrical and slender cells of P. redfieldii, which had a long, apically located spine. The species are nevertheless closely related and share an identical architecture of the periflagellar area with a distinctive, largely reduced accessory pore together with a very small platelet 7. This apomorphy clearly differentiates both species from other species of Prorocentrum. Both species differ in their primary rRNA sequences, and ITS and LSU sequence differences will enable them to be distinguished in future meta-barcoding studies. The present study demonstrates that P. triestinum and P. redfieldii are distinct species and thus contributes to a reliable biodiversity assessment of Prorocentrum.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...